Running an Ensemble
libEnsemble features two approaches to run an ensemble. We recommend the newer Ensemble
class,
but will continue to support libE()
for backward compatibility.
- class libensemble.ensemble.Ensemble
The primary object for a libEnsemble workflow. Parses and validates settings, sets up logging, and maintains output.
Example
1import numpy as np 2 3from libensemble import Ensemble 4from libensemble.gen_funcs.sampling import latin_hypercube_sample 5from libensemble.sim_funcs.simple_sim import norm_eval 6from libensemble.specs import ExitCriteria, GenSpecs, LibeSpecs, SimSpecs 7 8libE_specs = LibeSpecs(nworkers=4) 9sampling = Ensemble(libE_specs=libE_specs) 10sampling.sim_specs = SimSpecs( 11 sim_f=norm_eval, 12 inputs=["x"], 13 outputs=[("f", float)], 14) 15sampling.gen_specs = GenSpecs( 16 gen_f=latin_hypercube_sample, 17 outputs=[("x", float, (1,))], 18 user={ 19 "gen_batch_size": 50, 20 "lb": np.array([-3]), 21 "ub": np.array([3]), 22 }, 23) 24 25sampling.add_random_streams() 26sampling.exit_criteria = ExitCriteria(sim_max=100) 27 28if __name__ == "__main__": 29 sampling.run() 30 sampling.save_output(__file__)
Run the above example via
python this_file.py
.Instead of using the libE_specs line, you can also use
sampling = Ensemble(parse_args=True)
and run viapython this_file.py -n 4
(4 workers). Theparse_args=True
parameter instructs the Ensemble class to read command-line arguments.Configure by:
Option 1: Providing parameters on instantiation
1from libensemble import Ensemble 2from my_simulator import sim_find_energy 3 4sim_specs = { 5 "sim_f": sim_find_energy, 6 "in": ["x"], 7 "out": [("y", float)], 8} 9 10experiment = Ensemble(sim_specs=sim_specs)
Option 2: Assigning parameters to an instance
1from libensemble import Ensemble, SimSpecs 2from my_simulator import sim_find_energy 3 4sim_specs = SimSpecs( 5 sim_f=sim_find_energy, 6 inputs=["x"], 7 outputs=[("y", float)], 8) 9 10experiment = Ensemble() 11experiment.sim_specs = sim_specs
Option 3: Loading parameters from files
1from libensemble import Ensemble 2 3experiment = Ensemble() 4 5my_experiment.from_yaml("my_parameters.yaml") 6# or... 7my_experiment.from_toml("my_parameters.toml") 8# or... 9my_experiment.from_json("my_parameters.json")
1libE_specs: 2 save_every_k_gens: 20 3 4exit_criteria: 5 sim_max: 80 6 7gen_specs: 8 gen_f: generator.gen_random_sample 9 outputs: 10 x: 11 type: float 12 size: 1 13 user: 14 gen_batch_size: 5 15 16sim_specs: 17 sim_f: simulator.sim_find_sine 18 inputs: 19 - x 20 outputs: 21 y: 22 type: float
1[libE_specs] 2 save_every_k_gens = 300 3 4[exit_criteria] 5 sim_max = 80 6 7[gen_specs] 8 gen_f = "generator.gen_random_sample" 9 [gen_specs.outputs] 10 [gen_specs.outputs.x] 11 type = "float" 12 size = 1 13 [gen_specs.user] 14 gen_batch_size = 5 15 16[sim_specs] 17 sim_f = "simulator.sim_find_sine" 18 inputs = ["x"] 19 [sim_specs.outputs] 20 [sim_specs.outputs.y] 21 type = "float"
1{ 2 "libE_specs": { 3 "save_every_k_gens": 300, 4 }, 5 "exit_criteria": { 6 "sim_max": 80 7 }, 8 "gen_specs": { 9 "gen_f": "generator.gen_random_sample", 10 "outputs": { 11 "x": { 12 "type": "float", 13 "size": 1 14 } 15 }, 16 "user": { 17 "gen_batch_size": 5 18 } 19 }, 20 "sim_specs": { 21 "sim_f": "simulator.sim_find_sine", 22 "inputs": ["x"], 23 "outputs": { 24 "f": {"type": "float"} 25 } 26 } 27}
- Parameters:
sim_specs (
dict
orSimSpecs
) – Specifications for the simulation functiongen_specs (
dict
orGenSpecs
, Optional) – Specifications for the generator functionexit_criteria (
dict
orExitCriteria
, Optional) – Tell libEnsemble when to stop a runlibE_specs (
dict
orLibeSpecs
, Optional) – Specifications for libEnsemblealloc_specs (
dict
orAllocSpecs
, Optional) – Specifications for the allocation functionpersis_info (
dict
, Optional) – Persistent information to be passed between user function instances (example)executor (
Executor
, Optional) – libEnsemble Executor instance for use within simulation or generator functionsH0 (NumPy structured array, Optional) – A libEnsemble history to be prepended to this run’s history (example)
parse_args (bool, Optional) – Read
nworkers
,comms
, and other arguments from the command-line. For MPI, calculatenworkers
and set theis_manager
Boolean attribute on MPI rank 0. See theparse_args
docs for more information.
- ready()
Quickly verify that all necessary data has been provided
- Return type:
bool
- run()
Initializes libEnsemble.
MPI/comms Notes
Manager–worker intercommunications are parsed from the
comms
key of libE_specs. An MPI runtime is assumed by default if--comms local
wasn’t specified on the command-line or inlibE_specs
.If a MPI communicator was provided in
libE_specs
, then each.run()
call will initiate intercommunications on a duplicate of that communicator. Otherwise, a duplicate ofCOMM_WORLD
will be used.- Returns:
H (NumPy structured array) – History array storing rows for each point. (example)
persis_info (
dict
) – Final state of persistent information (example)exit_flag (
int
) – Flag containing final task status0 = No errors 1 = Exception occurred 2 = Manager timed out and ended simulation 3 = Current process is not in libEnsemble MPI communicator
- Return type:
(numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], <class ‘dict’>, <class ‘int’>)
- from_yaml(file_path)
Parameterizes libEnsemble from
yaml
file- Parameters:
file_path (str)
- from_toml(file_path)
Parameterizes libEnsemble from
toml
file- Parameters:
file_path (str)
- from_json(file_path)
Parameterizes libEnsemble from
json
file- Parameters:
file_path (str)
- add_random_streams(num_streams=0, seed='')
Adds
np.random
generators for each worker ID toself.persis_info
.- Parameters:
num_streams (int, Optional) – Number of matching worker ID and random stream entries to create. Defaults to
self.nworkers
.seed (str, Optional) – Seed for NumPy’s RNG.
- save_output(file)
Writes out History array and persis_info to files. If using a workflow_dir, will place with specified filename in that directory.
Format:
<calling_script>_results_History_length=<length>_evals=<Completed evals>_ranks=<nworkers>
- Parameters:
file (str)
The libE module is the outer libEnsemble routine.
This module sets up the manager and the team of workers, configured according
to the contents of libE_specs. The manager/worker
communications scheme used in libEnsemble is parsed from the comms
key if
present, with valid values being mpi
, local
(for multiprocessing), or
tcp
.
MPI is the default if nworkers
is not given. However, if libE_specs["nworkers"]
is specified, then local
comms will be used unless a parallel MPI environment
is detected.
For mpi
comms, if a communicator is specified, each call to this module
will initiate manager/worker communications on a duplicate of that
communicator. Otherwise, a duplicate of COMM_WORLD
will be used.
In the vast majority of cases, programming with libEnsemble involves the creation
of a calling script, a Python file where libEnsemble is parameterized via
the various specification dictionaries (e.g. libE_specs,
sim_specs, and gen_specs).
The outer libEnsemble routine libE()
is imported and
called with such dictionaries to initiate libEnsemble. A simple calling script
(from the first tutorial) may resemble:
1import numpy as np
2from libensemble.libE import libE
3from generator import gen_random_sample
4from simulator import sim_find_sine
5from libensemble.tools import add_unique_random_streams
6
7nworkers, is_manager, libE_specs, _ = parse_args()
8
9libE_specs["save_every_k_gens"] = 20
10
11gen_specs = {
12 "gen_f": gen_random_sample,
13 "out": [("x", float, (1,))],
14 "user": {"lower": np.array([-3]), "upper": np.array([3]), "gen_batch_size": 5},
15}
16
17sim_specs = {"sim_f": sim_find_sine, "in": ["x"], "out": [("y", float)]}
18
19persis_info = add_unique_random_streams({}, nworkers + 1)
20
21exit_criteria = {"sim_max": 80}
22
23H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, libE_specs=libE_specs)
This will initiate libEnsemble with a Manager and nworkers
workers (parsed from
the command line), and runs on laptops or supercomputers. If an exception is
encountered by the manager or workers, the history array is dumped to file, and
MPI abort is called.
On macOS (since Python 3.8) and Windows, the default multiprocessing start method is "spawn"
and you must place most calling script code (or just libE()
/ Ensemble().run()
at a minimum) in
an if __name__ == "__main__:"
block.
Therefore a calling script that is universal across all platforms and comms-types may resemble:
1import numpy as np
2from libensemble.libE import libE
3from generator import gen_random_sample
4from simulator import sim_find_sine
5from libensemble.tools import add_unique_random_streams
6
7if __name__ == "__main__":
8 nworkers, is_manager, libE_specs, _ = parse_args()
9
10 libE_specs["save_every_k_gens"] = 20
11
12 gen_specs = {
13 "gen_f": gen_random_sample,
14 "out": [("x", float, (1,))],
15 "user": {
16 "lower": np.array([-3]),
17 "upper": np.array([3]),
18 "gen_batch_size": 5,
19 },
20 }
21
22 sim_specs = {
23 "sim_f": sim_find_sine,
24 "in": ["x"],
25 "out": [("y", float)],
26 }
27
28 persis_info = add_unique_random_streams({}, nworkers + 1)
29
30 exit_criteria = {"sim_max": 80}
31
32 H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, libE_specs=libE_specs)
Alternatively, you may set the multiprocessing start method to "fork"
via the following:
1from multiprocessing import set_start_method
2
3set_start_method("fork")
But note that this is incompatible with some libraries.
See below for the complete traditional API.
- libensemble.libE.libE(sim_specs, gen_specs, exit_criteria, persis_info={}, alloc_specs=AllocSpecs(alloc_f=<function give_sim_work_first>, user={'num_active_gens': 1}, outputs=[]), libE_specs={}, H0=None)
- Parameters:
sim_specs (
dict
orSimSpecs
) – Specifications for the simulation function (example)gen_specs (
dict
orGenSpecs
, Optional) – Specifications for the generator function (example)exit_criteria (
dict
orExitCriteria
, Optional) – Tell libEnsemble when to stop a run (example)persis_info (
dict
, Optional) – Persistent information to be passed between user functions (example)alloc_specs (
dict
orAllocSpecs
, Optional) – Specifications for the allocation function (example)libE_specs (
dict
orLibeSpecs
, Optional) – Specifications for libEnsemble (example)H0 – A libEnsemble history to be prepended to this run’s history (example)
- Returns:
H (NumPy structured array) – History array storing rows for each point. (example)
persis_info (
dict
) – Final state of persistent information (example)exit_flag (
int
) – Flag containing final task status0 = No errors 1 = Exception occurred 2 = Manager timed out and ended simulation 3 = Current process is not in libEnsemble MPI communicator
- Return type:
(<class ‘numpy.ndarray’>, Dict, <class ‘int’>)