Simulator Functions

Simulator and Generator functions have relatively similar interfaces.

Writing a Simulator

def my_simulation(Input, persis_info, sim_specs, libE_info):
    batch_size = sim_specs["user"]["batch_size"]

    Output = np.zeros(batch_size, sim_specs["out"])
    # ...
    Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

    return Output, persis_info
from libensemble.specs import input_fields, output_data


@input_fields(["x"])
@output_data([("f", float)])
def my_simulation(Input, persis_info, sim_specs, libE_info):
    batch_size = sim_specs["user"]["batch_size"]

    Output = np.zeros(batch_size, sim_specs["out"])
    # ...
    Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

    return Output, persis_info

Most sim_f function definitions written by users resemble:

def my_simulation(Input, persis_info, sim_specs, libE_info):

where:

  • Input is a selection of the History array, a NumPy structured array.

  • persis_info is a dictionary containing state information.

  • sim_specs is a dictionary of simulation parameters.

  • libE_info is a dictionary containing libEnsemble-specific entries.

Valid simulator functions can accept a subset of the above parameters. So a very simple simulator function can start:

def my_simulation(Input):

If sim_specs was initially defined:

sim_specs = SimSpecs(
    sim_f=my_simulation,
    inputs=["x"],
    outputs=["f", float, (1,)],
    user={"batch_size": 128},
)
sim_specs = SimSpecs(
    sim_f=my_simulation,
    user={"batch_size": 128},
)

Then user parameters and a local array of outputs may be obtained/initialized like:

batch_size = sim_specs["user"]["batch_size"]
Output = np.zeros(batch_size, dtype=sim_specs["out"])

This array should be populated with output values from the simulation:

Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

Then return the array and persis_info to libEnsemble:

return Output, persis_info

Between the Output definition and the return, any computation can be performed. Users can try an executor to submit applications to parallel resources, or plug in components from other libraries to serve their needs.

Executor

libEnsemble’s Executors are commonly used within simulator functions to launch and monitor applications. An excellent overview is already available here.

See the Ensemble with an MPI Application tutorial for an additional example to try out.

Persistent Simulators

Simulator functions can also be written in a persistent fashion. See the here for a general API overview of writing persistent generators, since the interface is largely identical. The only differences are to pass EVAL_SIM_TAG when instantiating a PersistentSupport class instance and to return FINISHED_PERSISTENT_SIM_TAG when the simulator function returns.

Note

An example routine using a persistent simulator can be found in test_persistent_sim_uniform_sampling.