sampling

This module contains multiple generation functions for sampling a domain. All use (and return) a random stream in persis_info, given by the allocation function.

sampling.uniform_random_sample(_, persis_info, gen_specs)

Generates gen_specs["user"]["gen_batch_size"] points uniformly over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

See also

test_uniform_sampling.py # noqa

sampling.uniform_random_sample_with_variable_resources(_, persis_info, gen_specs)

Generates gen_specs["user"]["gen_batch_size"] points uniformly over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

Also randomly requests a different number of resource sets to be used in each evaluation.

This generator is used to test/demonstrate setting of resource sets.

#.. seealso::

#`test_uniform_sampling_with_variable_resources.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_uniform_sampling_with_variable_resources.py>`_ # noqa

sampling.uniform_random_sample_with_var_priorities_and_resources(H, persis_info, gen_specs)

Generates points uniformly over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"]. Also, randomly requests a different priority and number of resource sets to be used in the evaluation of the generated points, after the initial batch.

This generator is used to test/demonstrate setting of priorities and resource sets.

sampling.uniform_random_sample_obj_components(H, persis_info, gen_specs)

Generates points uniformly over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"] but requests each obj_component be evaluated separately.

sampling.latin_hypercube_sample(_, persis_info, gen_specs)

Generates gen_specs["user"]["gen_batch_size"] points in a Latin hypercube sample over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

See also

test_1d_sampling.py # noqa

sampling.uniform_random_sample_cancel(_, persis_info, gen_specs)

Similar to uniform_random_sample but with immediate cancellation of selected points for testing.

sampling.py
  1"""
  2This module contains multiple generation functions for sampling a domain. All
  3use (and return) a random stream in ``persis_info``, given by the allocation
  4function.
  5"""
  6import numpy as np
  7
  8__all__ = [
  9    "uniform_random_sample",
 10    "uniform_random_sample_with_variable_resources",
 11    "uniform_random_sample_with_var_priorities_and_resources",
 12    "uniform_random_sample_obj_components",
 13    "latin_hypercube_sample",
 14    "uniform_random_sample_cancel",
 15]
 16
 17
 18def uniform_random_sample(_, persis_info, gen_specs):
 19    """
 20    Generates ``gen_specs["user"]["gen_batch_size"]`` points uniformly over the domain
 21    defined by ``gen_specs["user"]["ub"]`` and ``gen_specs["user"]["lb"]``.
 22
 23    .. seealso::
 24        `test_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_uniform_sampling.py>`_ # noqa
 25    """
 26    ub = gen_specs["user"]["ub"]
 27    lb = gen_specs["user"]["lb"]
 28
 29    n = len(lb)
 30    b = gen_specs["user"]["gen_batch_size"]
 31
 32    H_o = np.zeros(b, dtype=gen_specs["out"])
 33
 34    H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
 35
 36    return H_o, persis_info
 37
 38
 39def uniform_random_sample_with_variable_resources(_, persis_info, gen_specs):
 40    """
 41    Generates ``gen_specs["user"]["gen_batch_size"]`` points uniformly over the domain
 42    defined by ``gen_specs["user"]["ub"]`` and ``gen_specs["user"]["lb"]``.
 43
 44    Also randomly requests a different number of resource sets to be used in each evaluation.
 45
 46    This generator is used to test/demonstrate setting of resource sets.
 47
 48    #.. seealso::
 49        #`test_uniform_sampling_with_variable_resources.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_uniform_sampling_with_variable_resources.py>`_ # noqa
 50    """
 51
 52    ub = gen_specs["user"]["ub"]
 53    lb = gen_specs["user"]["lb"]
 54    max_rsets = gen_specs["user"]["max_resource_sets"]
 55
 56    n = len(lb)
 57    b = gen_specs["user"]["gen_batch_size"]
 58
 59    H_o = np.zeros(b, dtype=gen_specs["out"])
 60
 61    H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
 62    H_o["resource_sets"] = persis_info["rand_stream"].integers(1, max_rsets + 1, b)
 63
 64    print(f'GEN: H rsets requested: {H_o["resource_sets"]}')
 65
 66    return H_o, persis_info
 67
 68
 69def uniform_random_sample_with_var_priorities_and_resources(H, persis_info, gen_specs):
 70    """
 71    Generates points uniformly over the domain defined by ``gen_specs["user"]["ub"]`` and
 72    ``gen_specs["user"]["lb"]``. Also, randomly requests a different priority and number of
 73    resource sets to be used in the evaluation of the generated points, after the initial batch.
 74
 75    This generator is used to test/demonstrate setting of priorities and resource sets.
 76
 77    """
 78    ub = gen_specs["user"]["ub"]
 79    lb = gen_specs["user"]["lb"]
 80    max_rsets = gen_specs["user"]["max_resource_sets"]
 81
 82    n = len(lb)
 83
 84    if len(H) == 0:
 85        b = gen_specs["user"]["initial_batch_size"]
 86
 87        H_o = np.zeros(b, dtype=gen_specs["out"])
 88        for i in range(0, b):
 89            # x= i*np.ones(n)
 90            x = persis_info["rand_stream"].uniform(lb, ub, (1, n))
 91            H_o["x"][i] = x
 92            H_o["resource_sets"][i] = 1
 93            H_o["priority"] = 1
 94
 95    else:
 96        H_o = np.zeros(1, dtype=gen_specs["out"])
 97        # H_o["x"] = len(H)*np.ones(n)  # Can use a simple count for testing.
 98        H_o["x"] = persis_info["rand_stream"].uniform(lb, ub)
 99        H_o["resource_sets"] = persis_info["rand_stream"].integers(1, max_rsets + 1)
100        H_o["priority"] = 10 * H_o["resource_sets"]
101        # print("Created sim for {} resource sets".format(H_o["resource_sets"]), flush=True)
102
103    return H_o, persis_info
104
105
106def uniform_random_sample_obj_components(H, persis_info, gen_specs):
107    """
108    Generates points uniformly over the domain defined by ``gen_specs["user"]["ub"]``
109    and ``gen_specs["user"]["lb"]`` but requests each ``obj_component`` be evaluated
110    separately.
111
112    .. seealso::
113        `test_uniform_sampling_one_residual_at_a_time.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_uniform_sampling_one_residual_at_a_time.py>`_ # noqa
114    """
115    ub = gen_specs["user"]["ub"]
116    lb = gen_specs["user"]["lb"]
117
118    n = len(lb)
119    m = gen_specs["user"]["components"]
120    b = gen_specs["user"]["gen_batch_size"]
121
122    H_o = np.zeros(b * m, dtype=gen_specs["out"])
123    for i in range(0, b):
124        x = persis_info["rand_stream"].uniform(lb, ub, (1, n))
125        H_o["x"][i * m : (i + 1) * m, :] = np.tile(x, (m, 1))
126        H_o["priority"][i * m : (i + 1) * m] = persis_info["rand_stream"].uniform(0, 1, m)
127        H_o["obj_component"][i * m : (i + 1) * m] = np.arange(0, m)
128
129        H_o["pt_id"][i * m : (i + 1) * m] = len(H) // m + i
130
131    return H_o, persis_info
132
133
134def uniform_random_sample_cancel(_, persis_info, gen_specs):
135    """
136    Similar to uniform_random_sample but with immediate cancellation of
137    selected points for testing.
138
139    """
140    ub = gen_specs["user"]["ub"]
141    lb = gen_specs["user"]["lb"]
142
143    n = len(lb)
144    b = gen_specs["user"]["gen_batch_size"]
145
146    H_o = np.zeros(b, dtype=gen_specs["out"])
147    for i in range(b):
148        if i % 10 == 0:
149            H_o[i]["cancel_requested"] = True
150
151    H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
152
153    return H_o, persis_info
154
155
156def latin_hypercube_sample(_, persis_info, gen_specs):
157    """
158    Generates ``gen_specs["user"]["gen_batch_size"]`` points in a Latin
159    hypercube sample over the domain defined by ``gen_specs["user"]["ub"]`` and
160    ``gen_specs["user"]["lb"]``.
161
162    .. seealso::
163        `test_1d_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_1d_sampling.py>`_ # noqa
164    """
165
166    ub = gen_specs["user"]["ub"]
167    lb = gen_specs["user"]["lb"]
168
169    n = len(lb)
170    b = gen_specs["user"]["gen_batch_size"]
171
172    H_o = np.zeros(b, dtype=gen_specs["out"])
173
174    A = lhs_sample(n, b, persis_info["rand_stream"])
175
176    H_o["x"] = A * (ub - lb) + lb
177
178    return H_o, persis_info
179
180
181def lhs_sample(n, k, stream):
182    # Generate the intervals and random values
183    intervals = np.linspace(0, 1, k + 1)
184    rand_source = stream.uniform(0, 1, (k, n))
185    rand_pts = np.zeros((k, n))
186    sample = np.zeros((k, n))
187
188    # Add a point uniformly in each interval
189    a = intervals[:k]
190    b = intervals[1:]
191    for j in range(n):
192        rand_pts[:, j] = rand_source[:, j] * (b - a) + a
193
194    # Randomly perturb
195    for j in range(n):
196        sample[:, j] = rand_pts[stream.permutation(k), j]
197
198    return sample

persistent_sampling

Persistent generator providing points using sampling

persistent_sampling.persistent_uniform(_, persis_info, gen_specs, libE_info)

This generation function always enters into persistent mode and returns gen_specs["initial_batch_size"] uniformly sampled points the first time it is called. Afterwards, it returns the number of points given. This can be used in either a batch or asynchronous mode by adjusting the allocation function.

persistent_sampling.persistent_request_shutdown(_, persis_info, gen_specs, libE_info)

This generation function is similar in structure to persistent_uniform, but uses a count to test exiting on a threshold value. This principle can be used with a supporting allocation function (e.g. start_only_persistent) to shutdown an ensemble when a condition is met.

persistent_sampling.uniform_nonblocking(_, persis_info, gen_specs, libE_info)

This generation function is designed to test non-blocking receives.

persistent_sampling.batched_history_matching(_, persis_info, gen_specs, libE_info)

Given - sim_f with an input of x with len(x)=n - b, the batch size of points to generate - q<b, the number of best samples to use in the following iteration

Pseudocode: Let (mu, Sigma) denote a mean and covariance matrix initialized to the origin and the identity, respectively.

While true (batch synchronous for now):

Draw b samples x_1, … , x_b from MVN( mu, Sigma) Evaluate f(x_1), … , f(x_b) and determine the set of q x_i whose f(x_i) values are smallest (breaking ties lexicographically) Update (mu, Sigma) based on the sample mean and sample covariance of these q x values.

persistent_sampling.persistent_uniform_with_cancellations(_, persis_info, gen_specs, libE_info)
persistent_sampling.py
  1"""Persistent generator providing points using sampling"""
  2
  3import numpy as np
  4
  5from libensemble.message_numbers import EVAL_GEN_TAG, FINISHED_PERSISTENT_GEN_TAG, PERSIS_STOP, STOP_TAG
  6from libensemble.tools.persistent_support import PersistentSupport
  7
  8__all__ = [
  9    "persistent_uniform",
 10    "persistent_request_shutdown",
 11    "uniform_nonblocking",
 12    "batched_history_matching",
 13    "persistent_uniform_with_cancellations",
 14]
 15
 16
 17def _get_user_params(user_specs):
 18    """Extract user params"""
 19    b = user_specs["initial_batch_size"]
 20    ub = user_specs["ub"]
 21    lb = user_specs["lb"]
 22    n = len(lb)  # dimension
 23    return b, n, lb, ub
 24
 25
 26def persistent_uniform(_, persis_info, gen_specs, libE_info):
 27    """
 28    This generation function always enters into persistent mode and returns
 29    ``gen_specs["initial_batch_size"]`` uniformly sampled points the first time it
 30    is called. Afterwards, it returns the number of points given. This can be
 31    used in either a batch or asynchronous mode by adjusting the allocation
 32    function.
 33
 34    .. seealso::
 35        `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>`_
 36        `test_persistent_sampling_async.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_sampling_async.py>`_
 37    """  # noqa
 38
 39    b, n, lb, ub = _get_user_params(gen_specs["user"])
 40    ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
 41
 42    # Send batches until manager sends stop tag
 43    tag = None
 44    while tag not in [STOP_TAG, PERSIS_STOP]:
 45        H_o = np.zeros(b, dtype=gen_specs["out"])
 46        H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
 47        tag, Work, calc_in = ps.send_recv(H_o)
 48        if hasattr(calc_in, "__len__"):
 49            b = len(calc_in)
 50
 51    H_o = None
 52    if gen_specs["user"].get("replace_final_fields", 0):
 53        # This is only to test libE ability to accept History after a
 54        # PERSIS_STOP. This history is returned in Work.
 55        H_o = Work
 56        H_o["x"] = -1.23
 57
 58    return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
 59
 60
 61def persistent_request_shutdown(_, persis_info, gen_specs, libE_info):
 62    """
 63    This generation function is similar in structure to persistent_uniform,
 64    but uses a count to test exiting on a threshold value. This principle can
 65    be used with a supporting allocation function (e.g. start_only_persistent)
 66    to shutdown an ensemble when a condition is met.
 67
 68    .. seealso::
 69        `test_persistent_uniform_gen_decides_stop.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_gen_decides_stop.py>`_
 70    """  # noqa
 71    b, n, lb, ub = _get_user_params(gen_specs["user"])
 72    shutdown_limit = gen_specs["user"]["shutdown_limit"]
 73    f_count = 0
 74    ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
 75
 76    # Send batches until manager sends stop tag
 77    tag = None
 78    while tag not in [STOP_TAG, PERSIS_STOP]:
 79        H_o = np.zeros(b, dtype=gen_specs["out"])
 80        H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
 81        tag, Work, calc_in = ps.send_recv(H_o)
 82        if hasattr(calc_in, "__len__"):
 83            b = len(calc_in)
 84        f_count += b
 85        if f_count >= shutdown_limit:
 86            print("Reached threshold.", f_count, flush=True)
 87            break  # End the persistent gen
 88
 89    return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
 90
 91
 92def uniform_nonblocking(_, persis_info, gen_specs, libE_info):
 93    """
 94    This generation function is designed to test non-blocking receives.
 95
 96    .. seealso::
 97        `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>`_
 98    """  # noqa
 99    b, n, lb, ub = _get_user_params(gen_specs["user"])
100    ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
101
102    # Send batches until manager sends stop tag
103    tag = None
104    while tag not in [STOP_TAG, PERSIS_STOP]:
105        H_o = np.zeros(b, dtype=gen_specs["out"])
106        H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
107        ps.send(H_o)
108
109        received = False
110        spin_count = 0
111        while not received:
112            tag, Work, calc_in = ps.recv(blocking=False)
113            if tag is not None:
114                received = True
115            else:
116                spin_count += 1
117
118        persis_info["spin_count"] = spin_count
119
120        if hasattr(calc_in, "__len__"):
121            b = len(calc_in)
122
123    return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
124
125
126def batched_history_matching(_, persis_info, gen_specs, libE_info):
127    """
128    Given
129    - sim_f with an input of x with len(x)=n
130    - b, the batch size of points to generate
131    - q<b, the number of best samples to use in the following iteration
132
133    Pseudocode:
134    Let (mu, Sigma) denote a mean and covariance matrix initialized to the
135    origin and the identity, respectively.
136
137    While true (batch synchronous for now):
138
139        Draw b samples x_1, ... , x_b from MVN( mu, Sigma)
140        Evaluate f(x_1), ... , f(x_b) and determine the set of q x_i whose f(x_i) values are smallest (breaking ties lexicographically)
141        Update (mu, Sigma) based on the sample mean and sample covariance of these q x values.
142
143    .. seealso::
144        `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>`_
145    """  # noqa
146    lb = gen_specs["user"]["lb"]
147
148    n = len(lb)
149    b = gen_specs["user"]["initial_batch_size"]
150    q = gen_specs["user"]["num_best_vals"]
151    ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
152
153    mu = np.zeros(n)
154    Sigma = np.eye(n)
155    tag = None
156
157    while tag not in [STOP_TAG, PERSIS_STOP]:
158        H_o = np.zeros(b, dtype=gen_specs["out"])
159        H_o["x"] = persis_info["rand_stream"].multivariate_normal(mu, Sigma, b)
160
161        # Send data and get next assignment
162        tag, Work, calc_in = ps.send_recv(H_o)
163        if calc_in is not None:
164            all_inds = np.argsort(calc_in["f"])
165            best_inds = all_inds[:q]
166            mu = np.mean(H_o["x"][best_inds], axis=0)
167            Sigma = np.cov(H_o["x"][best_inds].T)
168
169    return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
170
171
172def persistent_uniform_with_cancellations(_, persis_info, gen_specs, libE_info):
173    ub = gen_specs["user"]["ub"]
174    lb = gen_specs["user"]["lb"]
175    n = len(lb)
176    b = gen_specs["user"]["initial_batch_size"]
177
178    # Start cancelling points from half initial batch onward
179    cancel_from = b // 2  # Should get at least this many points back
180
181    ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
182
183    # Send batches until manager sends stop tag
184    tag = None
185    while tag not in [STOP_TAG, PERSIS_STOP]:
186        H_o = np.zeros(b, dtype=gen_specs["out"])
187        H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
188        tag, Work, calc_in = ps.send_recv(H_o)
189
190        if hasattr(calc_in, "__len__"):
191            b = len(calc_in)
192
193            # Cancel as many points as got back
194            cancel_ids = list(range(cancel_from, cancel_from + b))
195            cancel_from += b
196            ps.request_cancel_sim_ids(cancel_ids)
197
198    return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG

persistent_sampling_var_resources

Persistent random sampling using various methods of dynamic resource assignment

Each function generates points uniformly over the domain defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

persistent_sampling_var_resources.uniform_sample(_, persis_info, gen_specs, libE_info)

Randomly requests a different number of resource sets to be used in the evaluation of the generated points.

persistent_sampling_var_resources.uniform_sample_with_procs_gpus(_, persis_info, gen_specs, libE_info)

Randomly requests a different number of processors and gpus to be used in the evaluation of the generated points.

persistent_sampling_var_resources.uniform_sample_with_var_priorities(_, persis_info, gen_specs, libE_info)

Initial batch has matching priorities, after which a different number of resource sets and priorities are requested for each point.

persistent_sampling_var_resources.uniform_sample_diff_simulations(_, persis_info, gen_specs, libE_info)

Randomly requests a different number of processors for each simulation. One simulation type also uses GPUs.