
libEnsemble User Manual
Release 1.3.0+dev

Stephen Hudson, Jeffrey Larson, Stefan M. Wild,
David Bindel, John-Luke Navarro

May 20, 2024

Contents

1 libEnsemble: A complete toolkit for dynamic ensembles of calculations 1
1.1 Installation . 1
1.2 Basic Usage . 2
1.3 Resources . 2

2 Constructing Workflows 4
2.1 Running an Ensemble . 4
2.2 Configuring libEnsemble . 12

2.2.1 Simulation Specs . 12
2.2.2 Generator Specs . 14
2.2.3 General Specs . 16
2.2.4 Allocation Specs . 26
2.2.5 Platform Specs . 28
2.2.6 persis_info . 31
2.2.7 Exit Criteria . 34

2.3 Output Management . 35
2.3.1 Default Log Files . 35
2.3.2 Logger Configuration . 35
2.3.3 Analysis Utilities . 37

2.4 History Array . 38
2.4.1 Overview . 38
2.4.2 Reserved Fields . 38
2.4.3 Example Workflow updating History . 39

2.5 Resource Manager . 41
2.5.1 Zero-resource workers . 41
2.5.2 Dynamic Assignment of Resources . 44
2.5.3 Resource Detection . 49
2.5.4 Scheduler Module . 50
2.5.5 Worker Resources Module . 51

2.6 Writing User Functions . 53
2.6.1 Generator Functions . 53
2.6.2 Simulator Functions . 58
2.6.3 Allocation Functions . 60
2.6.4 User Function API . 66
2.6.5 calc_status . 68
2.6.6 Work Dictionary . 71
2.6.7 Worker Array . 71

2.7 Executors . 72
2.7.1 Executor Overview . 72

i

2.7.2 Base Executor - Local apps . 75
2.7.3 MPI Executor - MPI apps . 80
2.7.4 Balsam Executor - Remote apps . 84

2.8 Convenience Tools and Functions . 89

3 Running libEnsemble 96
3.1 Introduction . 96
3.2 Further Command Line Options . 98
3.3 Persistent Workers . 98
3.4 Running generator on the manager . 98
3.5 Environment Variables . 99
3.6 liberegister / libesubmit . 99
3.7 Further Run Information . 101

4 Running on HPC Systems 102
4.1 Central vs. Distributed . 102
4.2 Configuring the Run . 103
4.3 Systems with Launch/MOM Nodes . 104
4.4 Balsam - Externally Managed Applications . 104
4.5 Mapping Tasks to Resources . 105

4.5.1 Zero-resource workers . 105
4.6 Overriding Auto-Detection . 105
4.7 Globus Compute - Remote User Functions . 105
4.8 Instructions for Specific Platforms . 106

4.8.1 Aurora . 106
4.8.2 Bebop . 108
4.8.3 Frontier . 110
4.8.4 Improv . 112
4.8.5 Perlmutter . 113
4.8.6 Polaris . 116
4.8.7 Spock/Crusher . 118
4.8.8 Summit . 119
4.8.9 libEnsemble with SLURM . 122
4.8.10 Example Scheduler Submission Scripts . 124

5 Developer’s Guide 130
5.1 Contributing to libEnsemble . 130
5.2 Internal Modules . 131

5.2.1 Manager Module . 131
5.2.2 Worker Module . 133
5.2.3 History Module . 135
5.2.4 Resources Module . 137
5.2.5 RSET Resources Module . 140
5.2.6 Worker Resources Module . 141
5.2.7 Environment Resources Module . 145
5.2.8 Node Resources Module . 147
5.2.9 MPI Resources Module . 148
5.2.10 Scheduler Module . 149

5.3 Release Management . 150
5.3.1 Release Process . 151
5.3.2 Release Platforms . 152

6 Appendices 157
6.1 Advanced Installation . 157

6.1.1 Optional Dependencies for Additional Features . 160

ii

6.2 Tutorials . 160
6.2.1 Simple Introduction . 160
6.2.2 Executor with Electrostatic Forces . 167
6.2.3 Executor - Assign GPUs . 175
6.2.4 Optimization with APOSMM . 180
6.2.5 Calibration with Simulation Cancellation . 186

6.3 Frequently Asked Questions . 190
6.3.1 Debugging . 190
6.3.2 Common Errors . 190
6.3.3 HPC Errors and Questions . 192
6.3.4 libEnsemble Help . 193
6.3.5 macOS and Windows Errors . 194

6.4 Known Issues . 195
6.5 Example User Functions and Calling Scripts . 196

6.5.1 Generator Functions . 196
6.5.2 Simulation Functions . 224
6.5.3 Allocation Functions . 234
6.5.4 Calling Scripts . 242

6.6 Release Notes . 251
6.6.1 Release 1.3.0 . 252
6.6.2 Release 1.2.2 . 252
6.6.3 Release 1.2.1 . 253
6.6.4 Release 1.2.0 . 253
6.6.5 Release 1.1.0 . 254
6.6.6 Release 1.0.0 . 254
6.6.7 Release 0.10.2 . 256
6.6.8 Release 0.10.1 . 256
6.6.9 Release 0.10.0 . 256
6.6.10 Release 0.9.3 . 258
6.6.11 Release 0.9.2 . 258
6.6.12 Release 0.9.1 . 259
6.6.13 Release 0.9.0 . 259
6.6.14 Release 0.8.0 . 260
6.6.15 Release 0.7.2 . 262
6.6.16 Release 0.7.1 . 263
6.6.17 Release 0.7.0 . 264
6.6.18 Release 0.6.0 . 265
6.6.19 Release 0.5.2 . 265
6.6.20 Release 0.5.1 . 266
6.6.21 Release 0.5.0 . 266
6.6.22 Release 0.4.1 . 267
6.6.23 Release 0.4.0 . 267
6.6.24 Release 0.3.0 . 268
6.6.25 Release 0.2.0 . 268
6.6.26 Release 0.1.0 . 269

Python Module Index 270

Index 271

iii

Chapter 1
libEnsemble: A complete toolkit for dynamic
ensembles of calculations

Adaptive, portable, and scalable software for connecting “deciders” to experiments or simulations.

• Dynamic ensembles: Generate parallel tasks on-the-fly based on previous computations.

• Extreme portability and scaling: Run on or across laptops, clusters, and leadership-class machines.

• Heterogeneous computing: Dynamically and portably assign CPUs, GPUs, or multiple nodes.

• Application monitoring: Ensemble members can run, monitor, and cancel apps.

• Data-flow between tasks: Running ensemble members can send and receive data.

• Low start-up cost: No additional background services or processes required.

libEnsemble is effective at solving design, decision, and inference problems on parallel resources.

Quickstart

1.1 Installation

Install libEnsemble and its dependencies from PyPI using pip:

pip install libensemble

Other install methods are described in the docs.

1

https://libensemble.readthedocs.io/en/main/introduction.html
https://pypi.org
https://libensemble.readthedocs.io/en/main/advanced_installation.html

libEnsemble User Manual, Release 1.3.0+dev

1.2 Basic Usage

Create an Ensemble, then customize it with general settings, simulation and generator parameters, and an exit condi-
tion. Run the following via python this_file.py --comms local --nworkers 4:

import numpy as np

from libensemble import Ensemble
from libensemble.gen_funcs.sampling import uniform_random_sample
from libensemble.sim_funcs.six_hump_camel import six_hump_camel
from libensemble.specs import ExitCriteria, GenSpecs, SimSpecs
from libensemble.tools import add_unique_random_streams

if __name__ == "__main__":
sampling = Ensemble(parse_args=True)
sampling.sim_specs = SimSpecs(

sim_f=six_hump_camel,
inputs=["x"],
outputs=[("f", float)],

)
sampling.gen_specs = GenSpecs(

gen_f=uniform_random_sample,
outputs=[("x", float, (2,))],
user={

"gen_batch_size": 500,
"lb": np.array([-3, -2]),
"ub": np.array([3, 2]),

},
)

sampling.persis_info = add_unique_random_streams({}, sampling.nworkers + 1)
sampling.exit_criteria = ExitCriteria(sim_max=101)
sampling.run()
sampling.save_output(__file__)

if sampling.is_manager:
print("Some output data:\n", sampling.H[["x", "f"]][:10])

1.3 Resources

Support:

• Ask questions or report issues on GitHub.

• Email libEnsemble@lists.mcs.anl.gov to request libEnsemble Slack page.

• Join the libEnsemble mailing list for updates about new releases.

Further Information:

• Documentation is provided by ReadtheDocs.

• Contributions to libEnsemble are welcome.

• Browse production functions and workflows in the Community Examples repository.

2 Chapter 1. libEnsemble: A complete toolkit for dynamic ensembles of calculations

https://github.com/Libensemble/libensemble
https://libensemble.slack.com
https://lists.mcs.anl.gov/mailman/listinfo/libensemble
http://libensemble.readthedocs.org/
https://github.com/Libensemble/libensemble/blob/main/CONTRIBUTING.rst
https://github.com/Libensemble/libe-community-examples

libEnsemble User Manual, Release 1.3.0+dev

Cite libEnsemble:

@article{Hudson2022,
title = {{libEnsemble}: A Library to Coordinate the Concurrent

Evaluation of Dynamic Ensembles of Calculations},
author = {Stephen Hudson and Jeffrey Larson and John-Luke Navarro and Stefan M. Wild},
journal = {{IEEE} Transactions on Parallel and Distributed Systems},
volume = {33},
number = {4},
pages = {977--988},
year = {2022},
doi = {10.1109/tpds.2021.3082815}

}

See the tutorial for a step-by-step beginners guide.

See the user guide for more information.

Example Compatible Packages

libEnsemble and the Community Examples repository include example generator functions for the following libraries:

• APOSMM Asynchronously parallel optimization solver for finding multiple minima. Supported local optimiza-
tion routines include:

– DFO-LS Derivative-free solver for (bound constrained) nonlinear least-squares minimization

– NLopt Library for nonlinear optimization, providing a common interface for various methods

– scipy.optimize Open-source solvers for nonlinear problems, linear programming, constrained and nonlinear
least-squares, root finding, and curve fitting.

– PETSc/TAO Routines for the scalable (parallel) solution of scientific applications

• DEAP Distributed evolutionary algorithms

• Distributed optimization methods for minimizing sums of convex functions. Methods include:

– Primal-dual sliding (https://arxiv.org/pdf/2101.00143).

– Distributed gradient descent with gradient tracking (https://arxiv.org/abs/1908.11444).

– Proximal sliding (https://arxiv.org/abs/1406.0919).

• ECNoise Estimating Computational Noise in Numerical Simulations

• Surmise Modular Bayesian calibration/inference framework

• Tasmanian Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN

• VTMOP Fortran package for large-scale multiobjective multidisciplinary design optimization

libEnsemble has also been used to coordinate many computationally expensive simulations. Select examples include:

• OPAL Object Oriented Parallel Accelerator Library. (See this IPAC manuscript.)

• WarpX Advanced electromagnetic particle-in-cell code.

1.3. Resources 3

https://libensemble.readthedocs.io/en/latest/programming_libE.html
https://github.com/Libensemble/libe-community-examples
https://link.springer.com/article/10.1007/s12532-017-0131-4
https://github.com/numericalalgorithmsgroup/dfols
https://nlopt.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/optimize.html
http://www.mcs.anl.gov/petsc
https://deap.readthedocs.io/en/master/overview.html
https://arxiv.org/pdf/2101.00143
https://arxiv.org/abs/1908.11444
https://arxiv.org/abs/1406.0919
https://www.mcs.anl.gov/~wild/cnoise/
https://surmise.readthedocs.io/en/latest/index.html
https://tasmanian.ornl.gov/
https://github.com/Libensemble/libe-community-examples#vtmop
http://amas.web.psi.ch/docs/opal/opal_user_guide-1.6.0.pdf
https://doi.org/10.18429/JACoW-ICAP2018-SAPAF03
https://warpx.readthedocs.io/en/latest/

Chapter 2
Constructing Workflows

We now give greater detail in programming with libEnsemble.

2.1 Running an Ensemble

libEnsemble features two approaches to run an ensemble. We recommend the newer Ensemble class, but will continue
to support libE() for backward compatibility.

Ensemble Class

class libensemble.ensemble.Ensemble

The primary object for a libEnsemble workflow. Parses and validates settings, sets up logging, and maintains
output.

Example

1 import numpy as np
2

3 from libensemble import Ensemble
4 from libensemble.gen_funcs.sampling import latin_hypercube_sample
5 from libensemble.sim_funcs.one_d_func import one_d_example
6 from libensemble.specs import ExitCriteria, GenSpecs, SimSpecs
7

8 sampling = Ensemble(parse_args=True)
9 sampling.sim_specs = SimSpecs(

10 sim_f=one_d_example,
11 inputs=["x"],
12 outputs=[("f", float)],
13)
14 sampling.gen_specs = GenSpecs(
15 gen_f=latin_hypercube_sample,
16 outputs=[("x", float, (1,))],
17 user={

(continues on next page)

4

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

18 "gen_batch_size": 500,
19 "lb": np.array([-3]),
20 "ub": np.array([3]),
21 },
22)
23

24 sampling.add_random_streams()
25 sampling.exit_criteria = ExitCriteria(sim_max=101)
26

27 if __name__ == "__main__":
28 sampling.run()
29 sampling.save_output(__file__)

Run the above example via python this_file.py --comms local --nworkers 4. The
parse_args=True parameter instructs the Ensemble class to read command-line arguments.

Configure by:

Option 1: Providing parameters on instantiation

1 from libensemble import Ensemble
2 from my_simulator import sim_find_energy
3

4 sim_specs = {
5 "sim_f": sim_find_energy,
6 "in": ["x"],
7 "out": [("y", float)],
8 }
9

10 experiment = Ensemble(sim_specs=sim_specs)

Option 2: Assigning parameters to an instance

1 from libensemble import Ensemble, SimSpecs
2 from my_simulator import sim_find_energy
3

4 sim_specs = SimSpecs(
5 sim_f=sim_find_energy,
6 inputs=["x"],
7 outputs=[("y", float)],
8)
9

10 experiment = Ensemble()
11 experiment.sim_specs = sim_specs

2.1. Running an Ensemble 5

libEnsemble User Manual, Release 1.3.0+dev

Option 3: Loading parameters from files

1 from libensemble import Ensemble
2

3 experiment = Ensemble()
4

5 my_experiment.from_yaml("my_parameters.yaml")
6 # or...
7 my_experiment.from_toml("my_parameters.toml")
8 # or...
9 my_experiment.from_json("my_parameters.json")

my_parameters.yaml

1 libE_specs:
2 save_every_k_gens: 20
3

4 exit_criteria:
5 sim_max: 80
6

7 gen_specs:
8 gen_f: generator.gen_random_sample
9 outputs:

10 x:
11 type: float
12 size: 1
13 user:
14 gen_batch_size: 5
15

16 sim_specs:
17 sim_f: simulator.sim_find_sine
18 inputs:
19 - x
20 outputs:
21 y:
22 type: float

my_parameters.toml

1 [libE_specs]
2 save_every_k_gens = 300
3

4 [exit_criteria]
5 sim_max = 80
6

7 [gen_specs]
8 gen_f = "generator.gen_random_sample"
9 [gen_specs.outputs]

10 [gen_specs.outputs.x]
11 type = "float"

(continues on next page)

6 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

12 size = 1
13 [gen_specs.user]
14 gen_batch_size = 5
15

16 [sim_specs]
17 sim_f = "simulator.sim_find_sine"
18 inputs = ["x"]
19 [sim_specs.outputs]
20 [sim_specs.outputs.y]
21 type = "float"

my_parameters.json

1 {
2 "libE_specs": {
3 "save_every_k_gens": 300,
4 },
5 "exit_criteria": {
6 "sim_max": 80
7 },
8 "gen_specs": {
9 "gen_f": "generator.gen_random_sample",

10 "outputs": {
11 "x": {
12 "type": "float",
13 "size": 1
14 }
15 },
16 "user": {
17 "gen_batch_size": 5
18 }
19 },
20 "sim_specs": {
21 "sim_f": "simulator.sim_find_sine",
22 "inputs": ["x"],
23 "outputs": {
24 "f": {"type": "float"}
25 }
26 }
27 }

Parameters

• sim_specs (dict or SimSpecs) – Specifications for the simulation function

• gen_specs (dict or GenSpecs, Optional) – Specifications for the generator function

• exit_criteria (dict or ExitCriteria, Optional) – Tell libEnsemble when to stop a run

• libE_specs (dict or LibeSpecs, Optional) – Specifications for libEnsemble

• alloc_specs (dict or AllocSpecs, Optional) – Specifications for the allocation function

2.1. Running an Ensemble 7

libEnsemble User Manual, Release 1.3.0+dev

• persis_info (dict, Optional) – Persistent information to be passed between user function
instances (example)

• executor (Executor, Optional) – libEnsemble Executor instance for use within simulation
or generator functions

• H0 (NumPy structured array, Optional) – A libEnsemble history to be prepended to this run’s
history (example)

• parse_args (bool, Optional) – Read nworkers, comms, and other arguments from the
command-line. For MPI, calculate nworkers and set the is_manager Boolean attribute on
MPI rank 0. See the parse_args docs for more information.

ready()

Quickly verify that all necessary data has been provided

Return type
bool

run()

Initializes libEnsemble.

MPI/comms Notes

Manager–worker intercommunications are parsed from the comms key of libE_specs. An MPI runtime
is assumed by default if --comms local wasn’t specified on the command-line or in libE_specs.

If a MPI communicator was provided in libE_specs, then each .run() call will initiate intercommuni-
cations on a duplicate of that communicator. Otherwise, a duplicate of COMM_WORLD will be used.

Returns

• H (NumPy structured array) – History array storing rows for each point. (example)

• persis_info (dict) – Final state of persistent information (example)

• exit_flag (int) – Flag containing final task status

0 = No errors
1 = Exception occurred
2 = Manager timed out and ended simulation
3 = Current process is not in libEnsemble MPI communicator

Return type
(numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], <class ‘dict’>, <class ‘int’>)

from_yaml(file_path)
Parameterizes libEnsemble from yaml file

Parameters
file_path (str)

from_toml(file_path)
Parameterizes libEnsemble from toml file

Parameters
file_path (str)

8 Chapter 2. Constructing Workflows

https://docs.scipy.org/doc/numpy/user/basics.rec.html

libEnsemble User Manual, Release 1.3.0+dev

from_json(file_path)
Parameterizes libEnsemble from json file

Parameters
file_path (str)

add_random_streams(num_streams=0, seed='')
Adds np.random generators for each worker ID to self.persis_info.

Parameters

• num_streams (int, Optional) – Number of matching worker ID and random stream
entries to create. Defaults to self.nworkers.

• seed (str, Optional) – Seed for NumPy’s RNG.

save_output(file)
Writes out History array and persis_info to files. If using a workflow_dir, will place with specified filename
in that directory.

Format: <calling_script>_results_History_length=<length>_evals=<Completed
evals>_ranks=<nworkers>

Parameters
file (str)

libE()

The libE module is the outer libEnsemble routine.

This module sets up the manager and the team of workers, configured according to the contents of libE_specs. The
manager/worker communications scheme used in libEnsemble is parsed from the comms key if present, with valid
values being mpi, local (for multiprocessing), or tcp.

MPI is the default if nworkers is not given. However, if libE_specs["nworkers"] is specified, then local comms
will be used unless a parallel MPI environment is detected.

For mpi comms, if a communicator is specified, each call to this module will initiate manager/worker communications
on a duplicate of that communicator. Otherwise, a duplicate of COMM_WORLD will be used.

In the vast majority of cases, programming with libEnsemble involves the creation of a calling script, a Python file
where libEnsemble is parameterized via the various specification dictionaries (e.g. libE_specs, sim_specs, and
gen_specs). The outer libEnsemble routine libE() is imported and called with such dictionaries to initiate libEnsem-
ble. A simple calling script (from the first tutorial) may resemble:

1 import numpy as np
2 from libensemble.libE import libE
3 from generator import gen_random_sample
4 from simulator import sim_find_sine
5 from libensemble.tools import add_unique_random_streams
6

7 nworkers, is_manager, libE_specs, _ = parse_args()
8

9 libE_specs["save_every_k_gens"] = 20
10

11 gen_specs = {
12 "gen_f": gen_random_sample,
13 "out": [("x", float, (1,))],

(continues on next page)

2.1. Running an Ensemble 9

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

14 "user": {"lower": np.array([-3]), "upper": np.array([3]), "gen_batch_size": 5},
15 }
16

17 sim_specs = {"sim_f": sim_find_sine, "in": ["x"], "out": [("y", float)]}
18

19 persis_info = add_unique_random_streams({}, nworkers + 1)
20

21 exit_criteria = {"sim_max": 80}
22

23 H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, libE_
→˓specs=libE_specs)

This will initiate libEnsemble with a Manager and nworkers workers (parsed from the command line), and runs on
laptops or supercomputers. If an exception is encountered by the manager or workers, the history array is dumped to
file, and MPI abort is called.

On macOS (since Python 3.8) and Windows, the default multiprocessing start method is "spawn" and you must place
most calling script code (or just libE() / Ensemble().run() at a minimum) in an if __name__ == "__main__:"
block.

Therefore a calling script that is universal across all platforms and comms-types may resemble:

1 import numpy as np
2 from libensemble.libE import libE
3 from generator import gen_random_sample
4 from simulator import sim_find_sine
5 from libensemble.tools import add_unique_random_streams
6

7 if __name__ == "__main__":
8 nworkers, is_manager, libE_specs, _ = parse_args()
9

10 libE_specs["save_every_k_gens"] = 20
11

12 gen_specs = {
13 "gen_f": gen_random_sample,
14 "out": [("x", float, (1,))],
15 "user": {
16 "lower": np.array([-3]),
17 "upper": np.array([3]),
18 "gen_batch_size": 5,
19 },
20 }
21

22 sim_specs = {
23 "sim_f": sim_find_sine,
24 "in": ["x"],
25 "out": [("y", float)],
26 }
27

28 persis_info = add_unique_random_streams({}, nworkers + 1)
29

30 exit_criteria = {"sim_max": 80}
31

(continues on next page)

10 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

32 H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, libE_
→˓specs=libE_specs)

Alternatively, you may set the multiprocessing start method to "fork" via the following:

1 from multiprocessing import set_start_method
2

3 set_start_method("fork")

But note that this is incompatible with some libraries.

See below for the complete traditional API.

libensemble.libE.libE(sim_specs, gen_specs, exit_criteria, persis_info={},
alloc_specs=AllocSpecs(alloc_f=<function give_sim_work_first>,
user={'num_active_gens': 1}, outputs=[]), libE_specs={}, H0=None)

Parameters

• sim_specs (dict or SimSpecs) – Specifications for the simulation function (example)

• gen_specs (dict or GenSpecs, Optional) – Specifications for the generator function
(example)

• exit_criteria (dict or ExitCriteria, Optional) – Tell libEnsemble when to stop a run
(example)

• persis_info (dict, Optional) – Persistent information to be passed between user functions
(example)

• alloc_specs (dict or AllocSpecs, Optional) – Specifications for the allocation function
(example)

• libE_specs (dict or LibeSpecs, Optional) – Specifications for libEnsemble (example)

• H0 – A libEnsemble history to be prepended to this run’s history (example)

Returns

• H (NumPy structured array) – History array storing rows for each point. (example)

• persis_info (dict) – Final state of persistent information (example)

• exit_flag (int) – Flag containing final task status

0 = No errors
1 = Exception occurred
2 = Manager timed out and ended simulation
3 = Current process is not in libEnsemble MPI communicator

Return type
(<class ‘numpy.ndarray’>, Dict, <class ‘int’>)

2.1. Running an Ensemble 11

https://docs.scipy.org/doc/numpy/user/basics.rec.html

libEnsemble User Manual, Release 1.3.0+dev

2.2 Configuring libEnsemble

libEnsemble workflows are configured via the following data structures. See here for instruction on constructing a
complete workflow.

2.2.1 Simulation Specs

Used to specify the simulation function, its inputs and outputs, and user data.

Can be constructed and passed to libEnsemble as a Python class or a dictionary.

class

1 ...
2 from libensemble import SimSpecs
3 from simulator import sim_find_sine
4

5 ...
6

7 sim_specs = SimSpecs(
8 sim_f=sim_find_sine,
9 inputs=["x"],

10 outputs=[("y", float)],
11 user={"batch": 1234},
12)
13 ...

pydantic model libensemble.specs.SimSpecs

Specifications for configuring a Simulation Function.

Fields

• sim_f (Callable)

• inputs (List[str] | None)

• persis_in (List[str] | None)

• outputs (List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]] | None)

• globus_compute_endpoint (str | None)

• threaded (bool | None)

• user (dict | None)

field globus_compute_endpoint: str | None = ''

A Globus Compute (https://www.globus.org/compute) ID corresponding to an active endpoint on a remote
system. libEnsemble’s workers will submit simulator function instances to this endpoint instead of calling
them locally.

field inputs: List[str] | None = [] (alias 'in')

List of field names out of the complete history to pass into the simulation function upon calling.

12 Chapter 2. Constructing Workflows

https://www.globus.org/compute

libEnsemble User Manual, Release 1.3.0+dev

field outputs: List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]] | None = []
(alias 'out')

List of 2- or 3-tuples corresponding to NumPy dtypes. e.g. ("dim", int, (3,)), or ("path",
str). Typically used to initialize an output array within the simulation function: out = np.zeros(100,
dtype=sim_specs["out"]). Also necessary to construct libEnsemble’s history array.

field persis_in: List[str] | None = []

List of field names to send to a persistent simulation function throughout the run, following initialization.

field sim_f: Callable = None

Python function matching the sim_f interface. Evaluates parameters produced by a generator function.

field threaded: bool | None = False

Instruct Worker process to launch user function to a thread.

field user: dict | None = {}

A user-data dictionary to place bounds, constants, settings, or other parameters for customizing the simu-
lator function.

dict

1 ...
2 from simulator import six_hump_camel
3

4 ...
5

6 sim_specs = {
7 "sim_f": six_hump_camel,
8 "in": ["x"],
9 "out": [("y", float)],

10 "user": {"batch": 1234},
11 }
12 ...

• test_uniform_sampling.py has a sim_specs that declares the name of the "in" field variable, "x" (as specified
by the corresponding generator "out" field "x" from the gen_specs example). Only the field name is required
in sim_specs["in"].

sim_specs = {
"sim_f": six_hump_camel, # Function whose output is being minimized
"in": ["x"], # Keys to be given to sim_f
"out": [("f", float)], # Name of the outputs from sim_f

}

• run_libe_forces.py has a longer sim_specs declaration with a number of user-specific fields. These are given
to the corresponding sim_f, which can be found at forces_simf.py.

"sim_f": run_forces, # Function whose output is being minimized
"in": ["x"], # Name of input for sim_f
"out": [("energy", float)], # Name, type of output from sim_f
"user": {

"keys": ["seed"],
"cores": 2,

(continues on next page)

2.2. Configuring libEnsemble 13

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_simple/run_libe_forces.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_simple/forces_simf.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

"sim_particles": 1e3,
"sim_timesteps": 5,
"sim_kill_minutes": 10.0,
"particle_variance": 0.2,
"kill_rate": 0.5,
"fail_on_sim": False,
"fail_on_submit": False, # Won't occur if 'fail_on_sim' True

},
}

2.2.2 Generator Specs

Used to specify the generator function, its inputs and outputs, and user data.

Can be constructed and passed to libEnsemble as a Python class or a dictionary.

class

1 ...
2 import numpy as np
3 from libensemble import GenSpecs
4 from generator import gen_random_sample
5

6 ...
7

8 gen_specs = GenSpecs(
9 gen_f=gen_random_sample,

10 outputs=[("x", float, (1,))],
11 user={
12 "lower": np.array([-3]),
13 "upper": np.array([3]),
14 "gen_batch_size": 5,
15 },
16)
17 ...

pydantic model libensemble.specs.GenSpecs

Specifications for configuring a Generator Function.

Fields

• gen_f (Callable | None)

• inputs (List[str] | None)

• persis_in (List[str] | None)

• outputs (List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]] | None)

• globus_compute_endpoint (str | None)

• threaded (bool | None)

• user (dict | None)

14 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

field gen_f: Callable | None = None

Python function matching the gen_f interface. Produces parameters for evaluation by a simulator function,
and makes decisions based on simulator function output.

field globus_compute_endpoint: str | None = ''

A Globus Compute (https://www.globus.org/compute) ID corresponding to an active endpoint on a remote
system. libEnsemble’s workers will submit generator function instances to this endpoint instead of calling
them locally.

field inputs: List[str] | None = [] (alias 'in')

List of field names out of the complete history to pass into the generator function upon calling.

field outputs: List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]] | None = []
(alias 'out')

List of 2- or 3-tuples corresponding to NumPy dtypes. e.g. ("dim", int, (3,)), or ("path",
str). Typically used to initialize an output array within the generator: out = np.zeros(100,
dtype=gen_specs["out"]). Also used to construct libEnsemble’s history array.

field persis_in: List[str] | None = []

List of field names to send to a persistent generator function throughout the run, following initialization.

field threaded: bool | None = False

Instruct Worker process to launch user function to a thread.

field user: dict | None = {}

A user-data dictionary to place bounds, constants, settings, or other parameters for customizing the gener-
ator function

dict

1 ...
2 import numpy as np
3 from generator import gen_random_sample
4

5 ...
6

7 gen_specs = {
8 "gen_f": gen_random_sample,
9 "out": [("x", float, (1,))],

10 "user": {
11 "lower": np.array([-3]),
12 "upper": np.array([3]),
13 "gen_batch_size": 5,
14 },
15 }

See also:

• test_uniform_sampling.py: the generator function uniform_random_sample in sampling.py will generate 500
random points uniformly over the 2D domain defined by gen_specs["ub"] and gen_specs["lb"].

gen_specs = {
"gen_f": uniform_random_sample, # Function generating sim_f input
"out": [("x", float, (2,))], # Tell libE gen_f output, type, size

(continues on next page)

2.2. Configuring libEnsemble 15

https://www.globus.org/compute
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/gen_funcs/sampling.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

"user": {
"gen_batch_size": 500, # Used by this specific gen_f
"lb": np.array([-3, -2]), # Used by this specific gen_f
"ub": np.array([3, 2]), # Used by this specific gen_f

},
}

See also:

• test_persistent_aposmm_nlopt.py shows an example where gen_specs["in"] is empty, but
gen_specs["persis_in"] specifies values to return to the persistent generator.

• test_persistent_aposmm_with_grad.py shows a similar example where an H0 is used to provide points from a
previous run. In this case, gen_specs["in"] is populated to provide the generator with data for the initial
points.

• In some cases you might be able to give different (perhaps fewer) fields in "persis_in" than "in"; you may
not need to give x for example, as the persistent generator already has x for those points. See more example uses
of persis_in.

Note:
• In all interfaces, custom fields should only be placed in "user"
• Generator "out" fields typically match Simulation "in" fields, and vice-versa.

2.2.3 General Specs

libEnsemble is primarily customized by setting options within a LibeSpecs class or dictionary.

from libensemble.specs import LibeSpecs

specs = LibeSpecs(
comm=MPI.COMM_WORLD,
comms="mpi",
save_every_k_gens=1000,
sim_dirs_make=True,
ensemble_dir_path="/scratch/ensemble",

)

Settings by Category

General

comms [str] = "mpi":
Manager/Worker communications mode: 'mpi', 'local', or 'tcp'. If nworkers is specified, then local
comms will be used unless a parallel MPI environment is detected.

nworkers [int]:
Number of worker processes in "local", "threads", or "tcp".

gen_on_manager [bool] = False
Instructs Manager process to run generator functions. This generator function can access/modify user objects by
reference.

16 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_nlopt.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_with_grad.py
https://github.com/Libensemble/libensemble/wiki/Using-persis_in-field

libEnsemble User Manual, Release 1.3.0+dev

mpi_comm [MPI communicator] = MPI.COMM_WORLD:
libEnsemble MPI communicator.

dry_run [bool] = False:
Whether libEnsemble should immediately exit after validating all inputs.

abort_on_exception [bool] = True:
In MPI mode, whether to call MPI_ABORT on an exception. If False, an exception will be raised by the manager.

worker_timeout [int] = 1:
On libEnsemble shutdown, number of seconds after which workers considered timed out, then terminated.

kill_canceled_sims [bool] = False:
Try to kill sims with cancel_requested set to True. If False, the manager avoids this moderate overhead.

disable_log_files [bool] = False:
Disable ensemble.log and libE_stats.txt log files.

gen_workers [list of ints]:
List of workers that should run only generators. All other workers will run only simulator functions.

Directories

General

use_workflow_dir [bool] = False:
Whether to place all log files, dumped arrays, and default ensemble-directories in a separate workflow directory.
Each run is suffixed with a hash. If copying back an ensemble directory from another location, the copy is placed
here.

workflow_dir_path [str]:
Optional path to the workflow directory.

ensemble_dir_path [str] = "./ensemble":
Path to main ensemble directory. Can serve as single working directory for workers, or contain calculation
directories.

LibeSpecs.ensemble_dir_path = "/scratch/my_ensemble"

ensemble_copy_back [bool] = False:
Whether to copy back contents of ensemble_dir_path to launch location. Useful if ensemble_dir_path is
located on node-local storage.

reuse_output_dir [bool] = False:
Whether to allow overwrites and access to previous ensemble and workflow directories in subsequent runs.
False by default to protect results.

calc_dir_id_width [int] = 4:
The width of the numerical ID component of a calculation directory name. Leading zeros are padded to the
sim/gen ID.

use_worker_dirs [bool] = False:
Whether to organize calculation directories under worker-specific directories:

2.2. Configuring libEnsemble 17

libEnsemble User Manual, Release 1.3.0+dev

False

- /ensemble_dir
- /sim0000
- /gen0001
- /sim0001
...

True

- /ensemble_dir
- /worker1

- /sim0000
- /gen0001
- /sim0004
...

- /worker2
...

Sims

sim_dirs_make [bool] = False:
Whether to make calculation directories for each simulation function call.

sim_dir_copy_files [list]:
Paths to files or directories to copy into each sim directory, or ensemble directory. List of strings or pathlib.
Path objects.

sim_dir_symlink_files [list]:
Paths to files or directories to symlink into each sim directory, or ensemble directory. List of strings or pathlib.
Path objects.

sim_input_dir [str]:
Copy this directory’s contents into the working directory upon calling the simulation function. Forms the base
of a simulation directory.

Gens

gen_dirs_make [bool] = False:
Whether to make generator-specific calculation directories for each generator function call. Each persistent
generator creates a single directory.

gen_dir_copy_files [list]:
Paths to copy into the working directory upon calling the generator function. List of strings or pathlib.Path
objects

gen_dir_symlink_files [list]:
Paths to files or directories to symlink into each gen directory. List of strings or pathlib.Path objects

gen_input_dir [str]:
Copy this directory’s contents into the working directory upon calling the generator function. Forms the base of
a generator directory.

18 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Profiling

profile [bool] = False:
Profile manager and worker logic using cProfile.

safe_mode [bool] = True:
Prevents user functions from overwriting internal fields, but requires moderate overhead.

stats_fmt [dict]:
A dictionary of options for formatting "libE_stats.txt". See “Formatting Options for libE_stats.txt”.

TCP

workers [list]:
TCP Only: A list of worker hostnames.

ip [str]:
TCP Only: IP address for Manager’s system.

port [int]:
TCP Only: Port number for Manager’s system.

authkey [str]:
TCP Only: Authkey for Manager’s system.

workerID [int]:
TCP Only: Worker ID number assigned to the new process.

worker_cmd [list]:
TCP Only: Split string corresponding to worker/client Python process invocation. Contains a local Python path,
calling script, and manager/server format-fields for manager_ip, manager_port, authkey, and workerID.
nworkers is specified normally.

History

save_every_k_sims [int]:
Save history array to file after every k simulated points.

save_every_k_gens [int]:
Save history array to file after every k generated points.

save_H_and_persis_on_abort [bool] = True:
Save states of H and persis_info to file on aborting after an exception.

save_H_on_completion Optional[bool] = False
Save state of H to file upon completing a workflow. Also enabled when either save_every_k_sims or
save_every_k_gens is set.

save_H_with_date Optional[bool] = False
Save H filename contains date and timestamp.

H_file_prefix Optional[str] = "libE_history"
Prefix for H filename.

use_persis_return_gen [bool] = False:
Adds persistent generator output fields to the History array on return.

use_persis_return_sim [bool] = False:
Adds persistent simulator output fields to the History array on return.

2.2. Configuring libEnsemble 19

libEnsemble User Manual, Release 1.3.0+dev

final_gen_send [bool] = False:
Send final simulation results to persistent generators before shutdown. The results will be sent along with the
PERSIS_STOP tag.

Resources

disable_resource_manager [bool] = False:
Disable the built-in resource manager, including automatic resource detection and/or assignment of resources to
workers. "resource_info" will be ignored.

platform [str]:
Name of a known platform, e.g., LibeSpecs.platform = "perlmutter_g" Alternatively set the
LIBE_PLATFORM environment variable.

platform_specs [Platform|dict]:
A Platform object (or dictionary) specifying settings for a platform.. Fields not provided will be auto-
detected. Can be set to a known platform object.

num_resource_sets [int]:
The total number of resource sets into which resources will be divided. By default resources will be divided by
workers (excluding zero_resource_workers).

gen_num_procs [int] = 0:
The default number of processors (MPI ranks) required by generators. Unless overridden by equivalent
persis_info settings, generators will be allocated this many processors for applications launched via the
MPIExecutor.

gen_num_gpus [int] = 0:
The default number of GPUs required by generators. Unless overridden by the equivalent persis_info settings,
generators will be allocated this many GPUs.

use_tiles_as_gpus [bool] = False:
If True then treat a GPU tile as one GPU, assuming tiles_per_GPU is provided in platform_specs or de-
tected.

enforce_worker_core_bounds [bool] = False:
Permit submission of tasks with a higher processor count than the CPUs available to the worker. Larger node
counts are not allowed. Ignored when disable_resource_manager is set.

dedicated_mode [bool] = False:
Disallow any resources running libEnsemble processes (manager and workers) from being valid targets for app
submissions.

zero_resource_workers [list of ints]:
List of workers (by IDs) that require no resources. For when a fixed mapping of workers to resources is required.
Otherwise, use num_resource_sets. For use with supported allocation functions.

resource_info [dict]:
Provide resource information that will override automatically detected resources. The allowable fields are given
below in “Overriding Resource Auto-Detection” Ignored if disable_resource_manager is set.

scheduler_opts [dict]:
Options for the resource scheduler. See “Scheduler Options” for more options.

20 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Complete Class API

pydantic model libensemble.specs.LibeSpecs

Specifications for configuring libEnsemble’s runtime behavior.

field H_file_prefix: str | None = 'libE_history'

Prefix for H filename.

field abort_on_exception: bool | None = True

In MPI mode, whether to call MPI_ABORT on an exception. If False, an exception will be raised by the
manager.

field authkey: str | None = 'libE_auth_66897'

TCP Only: Authkey for Manager’s system.

field calc_dir_id_width: int | None = 4

The width of the numerical ID component of a calculation directory name. Leading zeros are padded to
the sim/gen ID.

field comms: str | None = 'mpi'

Manager/Worker communications mode. 'mpi', 'local', 'threads', or 'tcp' If nworkers is speci-
fied, then local comms will be used unless a parallel MPI environment is detected.

field dedicated_mode: bool | None = False

Instructs libEnsemble to not run applications on resources where libEnsemble processes (manager and
workers) are running.

field disable_log_files: bool | None = False

Disable ensemble.log and libE_stats.txt log files.

field disable_resource_manager: bool | None = False

Disable the built-in resource manager, including automatic resource detection and/or assignment of re-
sources to workers. "resource_info" will be ignored.

field dry_run: bool | None = False

Whether libEnsemble should immediately exit after validating all inputs.

field enforce_worker_core_bounds: bool | None = False

If False, the Executor will permit the submission of tasks with a higher processor count than the CPUs
available to the worker as detected by the resource manager. Larger node counts are not allowed. When
"disable_resource_manager" is True, this argument is ignored

field ensemble_copy_back: bool | None = False

Whether to copy back contents of ensemble_dir_path to launch location. Useful if
ensemble_dir_path is located on node-local storage.

field ensemble_dir_path: str | Path | None = PosixPath('ensemble')

Path to main ensemble directory. Can serve as a single working directory for workers, or contain calculation
directories

field final_gen_send: bool | None = False

Send final simulation results to persistent generators before shutdown. The results will be sent along with
the PERSIS_STOP tag.

field gen_dir_copy_files: List[Path | str] | None = []

Paths to copy into the working directory upon calling the generator function. List of strings or pathlib.
Path objects

2.2. Configuring libEnsemble 21

libEnsemble User Manual, Release 1.3.0+dev

field gen_dir_symlink_files: List[Path | str] | None = []

Paths to symlink into the working directory upon calling the generator function. List of strings or pathlib.
Path objects.

field gen_dirs_make: bool | None = False

Whether to make generator-specific calculation directories for each generator function call.

field gen_input_dir: str | Path | None = None

Copy this directory’s contents into the working directory upon calling the generator function. Forms the
base of a generator directory.

field gen_num_gpus: int | None = 0

The default number of GPUs required by generators. Unless overridden by the equivalent persis_info set-
tings, generators will be allocated this many GPUs.

field gen_num_procs: int | None = 0

The default number of processors (MPI ranks) required by generators. Unless overridden by the equivalent
persis_info settings, generators will be allocated this many processors for applications launched via the
MPIExecutor.

field gen_on_manager: bool | None = False

Instructs Manager process to run generator functions. This generator function can access/modify user
objects by reference.

field gen_workers: List[int] | None = []

List of workers that should only run generators. All other workers will only run simulator functions.

field ip: str | None = None

TCP Only: IP address for Manager’s system.

field kill_canceled_sims: bool | None = False

Try to kill sims with "cancel_requested" set True. If False, the manager avoids this moderate over-
head.

field mpi_comm: Any | None = None

libEnsemble MPI communicator. Default: MPI.COMM_WORLD

field num_resource_sets: int | None = 0

Total number of resource sets. Resources will be divided into this number. If not set, resources will be
divided evenly (excluding zero_resource_workers).

field nworkers: int | None = 0

Number of worker processes in "local", "threads", or "tcp".

field platform: str | None = ''

Name of a known platform defined in the platforms module.

See Known Platforms List.

Example:

libE_specs["platform"] = "perlmutter_g"

Alternatively set the environment variable LIBE_PLATFORM:

export LIBE_PLATFORM="perlmutter_g"

See also option platform_specs.

22 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

field platform_specs: Platform | dict | None = {}

A Platform object or dictionary specifying settings for a platform.

To use existing platform:

from libensemble.resources.platforms import PerlmutterGPU

libE_specs["platform_specs"] = PerlmutterGPU()

See Known Platforms List.

Or define a platform:

from libensemble.resources.platforms import Platform

libE_specs["platform_specs"] = Platform(
mpi_runner="srun",
cores_per_node=64,
logical_cores_per_node=128,
gpus_per_node=8,
gpu_setting_type="runner_default",
scheduler_match_slots=False,

)

For list of Platform fields see Platform Fields.

Any fields not given will be auto-detected by libEnsemble.

See also option platform.

field port: int | None = 0

TCP Only: Port number for Manager’s system.

field profile: bool | None = False

Profile manager and worker logic using cProfile.

field resource_info: dict | None = {}

Resource information to override automatically detected resources. Allowed fields are given below in
‘Overriding Resource Auto-detection’. Note that if disable_resource_manager is set then this option
is ignored.

field reuse_output_dir: bool | None = False

Whether to allow overwrites and access to previous ensemble and workflow directories in subsequent runs.
False by default to protect results.

field safe_mode: bool | None = False

Prevents user functions from overwriting protected History fields, but requires moderate overhead.

field save_H_and_persis_on_abort: bool | None = True

Save states of H and persis_info to file on aborting after an exception.

field save_H_on_completion: bool | None = False

Save state of H to file upon completing a workflow. Also enabled when either save_every_k_sims or
save_every_k_gens is set.

field save_H_with_date: bool | None = False

H filename contains date and timestamp.

2.2. Configuring libEnsemble 23

libEnsemble User Manual, Release 1.3.0+dev

field save_every_k_gens: int | None = 0

Save history array to file after every k generated points.

field save_every_k_sims: int | None = 0

Save history array to file after every k evaluated points.

field scheduler_opts: dict | None = {}

Options for the resource scheduler. See ‘Scheduler Options’ for more info

field sim_dir_copy_files: List[Path | str] | None = []

Paths to copy into the working directory upon calling the simulation function. List of strings or pathlib.
Path objects.

field sim_dir_symlink_files: List[Path | str] | None = []

Paths to symlink into the working directory upon calling the simulation function. List of strings or
pathlib.Path objects.

field sim_dirs_make: bool | None = False

Whether to make calculation directories for each simulation function call.

field sim_input_dir: str | Path | None = None

Copy this directory’s contents into the working directory upon calling the simulation function. Forms the
base of a simulation directory.

field stats_fmt: dict | None = {}

Options for formatting 'libE_stats.txt'. See ‘Formatting libE_stats.txt’.

field use_persis_return_gen: bool | None = False

Adds persistent generator output fields to the History array on return.

field use_persis_return_sim: bool | None = False

Adds persistent simulator output fields to the History array on return.

field use_tiles_as_gpus: bool | None = False

If True then treat a GPU tile as one GPU when GPU tiles is provided in platform specs or detected.

field use_worker_dirs: bool | None = False

Whether to organize calculation directories under worker-specific directories.

field use_workflow_dir: bool | None = False

Whether to place all log files, dumped arrays, and default output directories in a separate workflow directory.
Each run will be suffixed with a hash. If copying back an ensemble directory from a scratch space, the copy
is placed here.

field workerID: int | None = None

TCP Only: Worker ID number assigned to the new process.

field worker_cmd: List[str] | None = []

TCP Only: Split string corresponding to worker/client Python process invocation. Contains a local Python
path, calling script, and manager/server format-fields for manager_ip, manager_port, authkey, and
workerID. nworkers is specified normally.

field worker_timeout: int | None = 1

On libEnsemble shutdown, number of seconds after which workers considered timed out, then terminated.

field workers: List[str] | None = []

TCP Only: A list of worker hostnames.

24 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

field workflow_dir_path: str | Path | None = '.'

Optional path to the workflow directory.

field zero_resource_workers: List[int] | None = []

List of workers that require no resources. For when a fixed mapping of workers to resources is required.
Otherwise, use num_resource_sets. For use with supported allocation functions.

Scheduler Options

See options for built-in scheduler.

Overriding Resource Auto-Detection

Note that "cores_on_node" and "gpus_on_node" are supported for backward compatibility, but use of Platform
specification is recommended for these settings.

Resource Info Fields

The allowable libE_specs["resource_info"] fields are:

"cores_on_node" [tuple (int, int)]:
Tuple (physical cores, logical cores) on nodes.

"gpus_on_node" [int]:
Number of GPUs on each node.

"node_file" [str]:
Name of file containing a node-list. Default is "node_list".

"nodelist_env_slurm" [str]:
The environment variable giving a node list in Slurm format
(Default: Uses ``SLURM_NODELIST``). Queried only if
a ``node_list`` file is not provided and the resource manager is
enabled.

"nodelist_env_cobalt" [str]:
The environment variable giving a node list in Cobalt format
(Default: Uses ``COBALT_PARTNAME``) Queried only
if a ``node_list`` file is not provided and the resource manager
is enabled.

"nodelist_env_lsf" [str]:
The environment variable giving a node list in LSF format
(Default: Uses ``LSB_HOSTS``) Queried only
if a ``node_list`` file is not provided and the resource manager
is enabled.

"nodelist_env_lsf_shortform" [str]:
The environment variable giving a node list in LSF short-form
format (Default: Uses ``LSB_MCPU_HOSTS``) Queried only
if a ``node_list`` file is not provided and the resource manager is
enabled.

2.2. Configuring libEnsemble 25

libEnsemble User Manual, Release 1.3.0+dev

For example:

customizer = {cores_on_node": (16, 64),
"node_file": "libe_nodes"}

libE_specs["resource_info"] = customizer

Formatting Options for libE_stats File

The allowable libE_specs["stats_fmt"] fields are:

"task_timing" [bool] = ``False``:
Outputs elapsed time for each task launched by the executor.

"task_datetime" [bool] = ``False``:
Outputs the elapsed time and start and end time for each task launched by the␣

→˓executor.
Can be used with the ``"plot_libe_tasks_util_v_time.py"`` to give task utilization␣

→˓plots.

"show_resource_sets" [bool] = ``False``:
Shows the resource set IDs assigned to each worker for each call of the user␣

→˓function.

2.2.4 Allocation Specs

Allocation function specifications to be set in the user calling script. Optional.

Can be constructed and passed to libEnsemble as a Python class or a dictionary.

pydantic model libensemble.specs.AllocSpecs

Specifications for configuring an Allocation Function.

Fields

• alloc_f (Callable)

• user (dict | None)

• outputs (List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]])

field alloc_f: Callable = <function give_sim_work_first>

Python function matching the alloc_f interface. Decides when simulator and generator functions should
be called, and with what resources and parameters.

field outputs: List[Tuple[str, Any] | Tuple[str, Any, int | Tuple]] = [] (alias
'out')

List of 2- or 3-tuples corresponding to NumPy dtypes. e.g. ("dim", int, (3,)), or ("path", str).
Allocation functions that modify libEnsemble’s History array with additional fields should list those fields
here. Also used to construct libEnsemble’s history array.

field user: dict | None = {'num_active_gens': 1}

A user-data dictionary to place bounds, constants, settings, or other parameters for customizing the alloca-
tion function.

26 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Note:
• libEnsemble uses the following defaults if the user doesn’t provide their own alloc_specs:

Listing 1: Default settings for alloc_specs

alloc_f: Callable = give_sim_work_first
"""
Python function matching the ``alloc_f`` interface. Decides when simulator and␣

→˓generator functions
should be called, and with what resources and parameters.
"""

user: Optional[dict] = {"num_active_gens": 1}
"""
A user-data dictionary to place bounds, constants, settings, or other parameters
for customizing the allocation function.
"""

outputs: List[Union[Tuple[str, Any], Tuple[str, Any, Union[int, Tuple]]]] = Field([],
→˓ alias="out")
"""
List of 2- or 3-tuples corresponding to NumPy dtypes. e.g. ``("dim", int, (3,))``, or␣

→˓``("path", str)``.
Allocation functions that modify libEnsemble's History array with additional fields␣

→˓should list those
fields here. Also used to construct libEnsemble's history array.
"""

• Users can import and adjust these defaults using:

from libensemble.specs import AllocSpecs
my_new_alloc = AllocSpecs()
my_new_alloc.alloc_f = another_function

See also:

• test_uniform_sampling_one_residual_at_a_time.py specifies fields to be used by the allocation function
give_sim_work_first from fast_alloc_and_pausing.py.

alloc_specs = {
"alloc_f": give_sim_work_first, # Allocation function
"user": {

"stop_on_NaNs": True, # Should alloc preempt evals
"batch_mode": True, # Wait until all sim evals are done
"num_active_gens": 1, # Only allow one active generator
"stop_partial_fvec_eval": True, # Should alloc preempt evals

},
}

2.2. Configuring libEnsemble 27

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_one_residual_at_a_time.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/fast_alloc_and_pausing.py

libEnsemble User Manual, Release 1.3.0+dev

2.2.5 Platform Specs

libEnsemble detects platform specifications including MPI runners and resources. Usually this will result in the correct
settings. However, users can configure platform specifications via the platform_specs option or indicate a known
platform via the platform option.

platform_specs

A Platform object or dictionary specifying settings for a platform.

To define a platform (in calling script):

Platform Object

from libensemble.resources.platforms import Platform

libE_specs["platform_specs"] = Platform(
mpi_runner="srun",
cores_per_node=64,
logical_cores_per_node=128,
gpus_per_node=8,
gpu_setting_type="runner_default",
gpu_env_fallback="ROCR_VISIBLE_DEVICES",
scheduler_match_slots=False,

)

Dictionary

libE_specs["platform_specs"] = {
"mpi_runner": "srun",
"cores_per_node": 64,
"logical_cores_per_node": 128,
"gpus_per_node": 8,
"gpu_setting_type": "runner_default",
"gpu_env_fallback": "ROCR_VISIBLE_DEVICES",
"scheduler_match_slots": False,

}

The list of platform fields is given below. Any fields not given will be auto-detected by libEnsemble.

Platform Fields

pydantic model libensemble.resources.platforms.Platform

Class to define attributes of a target platform.

All are optional, and any not defined will be determined by libEnsemble’s auto-detection.

Config

• arbitrary_types_allowed: bool = True

• populate_by_name: bool = True

28 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

• extra: str = forbid

• validate_assignment: bool = True

field mpi_runner: str | None

MPI runner: One of "mpich", "openmpi", "aprun", "srun", "jsrun", "msmpi", "custom"

field runner_name: str | None

Literal string of MPI runner command. Only needed if different to the default

Note that "mpich" and "openmpi" runners have the default command "mpirun"

field cores_per_node: int | None

Number of physical CPU cores on a compute node of the platform

field logical_cores_per_node: int | None

Number of logical CPU cores on a compute node of the platform

field gpus_per_node: int | None

Number of GPU devices on a compute node of the platform

field tiles_per_gpu: int | None

Number of tiles on a GPU

field gpu_setting_type: str | None

How GPUs will be assigned.

Must take one of the following string options.

• "runner_default": Use default setting for MPI runner (same as if not set).

• "env": Use an environment variable (comma-separated list of slots)

• "option_gpus_per_node": Expresses GPUs per node on MPI runner command line.

• "option_gpus_per_task": Expresses GPUs per task on MPI runner command line.

With the exception of “runner_default”, the gpu_setting_name attribute is also required when this at-
tribute is set.

If “gpu_setting_type” is not provided (same as runner_default) and the MPI runner does not have a
default GPU setting in libEnsemble, and no other information is present, then the environment variable
CUDA_VISIBLE_DEVICES is used.

Examples:

Use environment variable ROCR_VISIBLE_DEVICES to assign GPUs.

"gpu_setting_type" = "env"
"gpu_setting_name" = "ROCR_VISIBLE_DEVICES"

Use command line option --gpus-per-node

"gpu_setting_type" = "option_gpus_per_node"
"gpu_setting_name" = "--gpus-per-node"

field gpu_setting_name: str | None

Name of GPU setting

See gpu_setting_type for more details.

2.2. Configuring libEnsemble 29

libEnsemble User Manual, Release 1.3.0+dev

field gpu_env_fallback: str | None

GPU fallback environment setting if not using an MPI runner.

For example:

"gpu_setting_type" = "runner_default"
"gpu_env_fallback" = "ROCR_VISIBLE_DEVICES"

This example will use the MPI runner default settings when using an MPI runner, but will otherwise use
ROCR_VISIBLE_DEVICES (e.g., if setting via function set_env_to_gpus).

If this is not set, the default is “CUDA_VISIBLE_DEVICES”.

field scheduler_match_slots: bool | None

Whether the libEnsemble resource scheduler should only assign matching slots when there are multiple
(partial) nodes assigned to a sim function.

Defaults to True, within libEnsemble.

Useful if setting an environment variable such as CUDA_VISIBLE_DEVICES, where the value should match
on each node of an MPI run (choose True).

When using command-line options just as --gpus-per-node, which allow the system’s application-level
scheduler to manage GPUs, then match_slots can be False (allowing for more efficient scheduling when
MPI runs cross nodes).

To use an existing platform:

from libensemble.resources.platforms import PerlmutterGPU

libE_specs["platform_specs"] = PerlmutterGPU()

See known platforms.

platform

A string giving the name of a known platform defined in the platforms module.

libE_specs["platform"] = "perlmutter_g"

Note: the environment variable LIBE_PLATFORM is an alternative way of setting.

E.g., in the command line or batch submission script:

export LIBE_PLATFORM="perlmutter_g"

Known Platforms List

Known_platforms

pydantic model libensemble.resources.platforms.Known_platforms

A list of platforms with known configurations.

There are three ways to specify a known system:

30 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

[“platform_specs”]

from libensemble.resources.platforms import PerlmutterGPU

libE_specs["platform_specs"] = PerlmutterGPU()

[“platform”]

libE_specs["platform"] = "perlmutter_g"

export LIBE_PLATFORM

On command-line or batch submission script:

export LIBE_PLATFORM="perlmutter_g"

If the platform is not specified, libEnsemble will attempt to detect known platforms (this is not guaranteed).

Note: libEnsemble should work on any platform, and detects most system configurations correctly. These options
are helpful for optimization and where auto-detection encounters ambiguity or an unknown feature.

field aurora: Aurora

field generic_rocm: GenericROCm

field crusher: Crusher

field frontier: Frontier

field perlmutter_c: PerlmutterCPU

field perlmutter_g: PerlmutterGPU

field polaris: Polaris

field spock: Spock

field summit: Summit

field sunspot: Sunspot

2.2.6 persis_info

Holds persistent information that can be updated during the ensemble.

An initialized persis_info dictionary can be provided to the libE() call or as an attribute of the Ensemble class.

Dictionary keys that have an integer value contain entries that are passed to and from the corresponding workers. These
are received in the persis_info argument of user functions, and returned as the optional second return value.

A typical example is a random number generator stream to be used in consecutive calls to a generator (see
add_unique_random_streams())

All other entries persist on the manager and can be updated in the calling script between ensemble invocations, or in
the allocation function.

Examples:

2.2. Configuring libEnsemble 31

libEnsemble User Manual, Release 1.3.0+dev

RNG or reusable structures

Listing 2: libensemble/libensemble/gen_funcs/sampling.py

1 def uniform_random_sample(_, persis_info, gen_specs):
2 """
3 Generates ``gen_specs["user"]["gen_batch_size"]`` points uniformly over the domain
4 defined by ``gen_specs["user"]["ub"]`` and ``gen_specs["user"]["lb"]``.
5

6 .. seealso::
7 `test_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/

→˓develop/libensemble/tests/functionality_tests/test_uniform_sampling.py>`_ # noqa
8 """
9 ub = gen_specs["user"]["ub"]

10 lb = gen_specs["user"]["lb"]
11

12 n = len(lb)
13 b = gen_specs["user"]["gen_batch_size"]
14

15 H_o = np.zeros(b, dtype=gen_specs["out"])
16

17 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
18

19 return H_o, persis_info
20

21

Incrementing indexes or process counts

32 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Listing 3: libensemble/alloc_funcs/fast_alloc.py

1 for wid in support.avail_worker_ids(gen_workers=False):
2 persis_info = support.skip_canceled_points(H, persis_info)
3 if persis_info["next_to_give"] < len(H):
4 try:
5 Work[wid] = support.sim_work(wid, H, sim_specs["in"], [persis_info["next_

→˓to_give"]], [])
6 except InsufficientFreeResources:
7 break
8 persis_info["next_to_give"] += 1
9

Tracking running generators

Listing 4: libensemble/alloc_funcs/start_only_persistent.py

1 avail_workers = support.avail_worker_ids(persistent=False, zero_resource_
→˓workers=True, gen_workers=True)

2

3 for wid in avail_workers:
4 if gen_count < user.get("num_active_gens", 1):
5 # Finally, start a persistent generator as there is nothing else to do.
6 try:
7 Work[wid] = support.gen_work(
8 wid,
9 gen_specs.get("in", []),

10 range(len(H)),
11 persis_info.get(wid),
12 persistent=True,
13 active_recv=active_recv_gen,
14)
15 except InsufficientFreeResources:
16 break
17

18 persis_info["num_gens_started"] = persis_info.get("num_gens_started", 0)␣
→˓+ 1

19 gen_count += 1
20

Allocation function triggers shutdown

2.2. Configuring libEnsemble 33

libEnsemble User Manual, Release 1.3.0+dev

Listing 5: libensemble/alloc_funcs/start_only_persistent.py

1 if gen_count < persis_info.get("num_gens_started", 0):
2 # When a persistent worker is done, trigger a shutdown (returning exit condition␣

→˓of 1)
3 return Work, persis_info, 1
4

When there are repeated calls to libE() or ensemble.run(), users may need to modify or reset the contents of
persis_info in some cases.

See also:

From: support.py

persis_info_1 = {
"total_gen_calls": 0, # Counts gen calls in alloc_f
"last_worker": 0, # Remembers last gen worker in alloc_f
"next_to_give": 0, # Remembers next H row to give in alloc_f

}

persis_info_1[0] = {
"run_order": {}, # Used by manager to remember run order
"total_runs": 0, # Used by manager to count total runs
"rand_stream": np.random.default_rng(1),

}

2.2.7 Exit Criteria

The following criteria (or termination tests) can be used to configure when to stop a workflow.

Can be constructed and passed to libEnsemble as a Python class or a dictionary.

pydantic model libensemble.specs.ExitCriteria

Specifications for configuring when libEnsemble should stop a given run.

Fields

• sim_max (int | None)

• gen_max (int | None)

• wallclock_max (float | None)

• stop_val (Tuple[str, float] | None)

field gen_max: int | None = None

Stop when this many new points have been generated by generator functions.

field sim_max: int | None = None

Stop when this many new points have been evaluated by simulation functions.

field stop_val: Tuple[str, float] | None = None

Stop when H[str] < float for the given (str, float) pair.

field wallclock_max: float | None = None

Stop when this many seconds has elapsed since the manager initialized.

34 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/support.py

libEnsemble User Manual, Release 1.3.0+dev

See also:

From test_persistent_aposmm_dfols.py.

exit_criteria = {
"sim_max": 1000,
"wallclock_max": 100,
"stop_val": ("f", 3000),

}

2.3 Output Management

2.3.1 Default Log Files

The history array H and persis_info dictionary are returned to the user by libEnsemble. If libEnsemble aborts on an
exception, these structures are dumped automatically to these files:

• libE_history_at_abort_<sim_count>.npy

• libE_persis_info_at_abort_<sim_count>.pickle

Two other libEnsemble files produced by default:

• libE_stats.txt: One-line summaries for each user calculation.

• ensemble.log: Logging output. Multiple runs will append output if this file isn’t removed. See below for
config info.

Global options:

libE_specs["disable_log_files"] = True: Disable output files

libE_specs["use_workflow_dir"] = True: Place output files in workflow-instance directories

libE_specs["save_H_and_persis_on_abort"] = False: Disable dumping the History array and persis_info
to files

from libensemble.specs import LibeSpecs

specs = LibeSpecs(disable_log_files=True, save_H_and_persis_on_abort=False)

2.3.2 Logger Configuration

The libEnsemble logger uses the standard Python logging levels (DEBUG, INFO, WARNING, ERROR, CRITICAL) plus one
additional custom level (MANAGER_WARNING) between WARNING and ERROR.

The default level is INFO, which includes information about how tasks are submitted and when tasks are killed. To
gain additional diagnostics, set the logging level to DEBUG. libEnsemble writes to ensemble.log by default. A log file
name can also be supplied.

To change the logging level to DEBUG:

from libensemble import logger
logger.set_level("DEBUG")

Logger messages of MANAGER_WARNING level or higher are also displayed through stderr by default. This boundary
can be adjusted:

2.3. Output Management 35

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_dfols.py

libEnsemble User Manual, Release 1.3.0+dev

from libensemble import logger

Only display messages with level >= ERROR
logger.set_stderr_level("ERROR")

stderr displaying can be effectively disabled by setting the stderr level to CRITICAL.

Logger Module

logger.set_level(level)
Sets libEnsemble logging level

Parameters
level (int)

Return type
None

logger.get_level()

Returns libEnsemble logging level

Return type
int

logger.set_filename(filename)
Sets logger filename if loggers not yet created, else None

Parameters
filename (str)

Return type
None

logger.set_directory(dirname)
Sets target directory to contain logfiles if loggers not yet created

Parameters
dirname (str)

Return type
None

logger.set_stderr_level(level)
Sets logger to mirror certain messages to stderr

Parameters
level (int)

Return type
None

logger.get_stderr_level()

Returns libEnsemble stderr logging level

Return type
int

36 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Note: The scripts directory, in the libEnsemble project root directory, contains scripts to compare outputs and create
plots based on the ensemble output.

2.3.3 Analysis Utilities

Analysis Utilities

Timing analysis scripts

Note that all plotting scripts produce a file rather than opening a plot interactively.

The following scripts must be run in the directory with the libE_stats.txt file. They extract and plot information
from that file.

• plot_libe_calcs_util_v_time.py: Extracts worker utilization vs. time plot (with one-second sampling).
Shows the number of workers running user sim or gen functions over time.

• plot_libe_tasks_util_v_time.py: Extracts launched task utilization v time plot (with one-second sam-
pling). Shows the number of workers with active tasks, launched via the executor, over time.

• plot_libe_histogram.py: Creates histogram showing the number of completed/killed/failed user calcula-
tions binned by run time.

Results analysis scripts

• print_npy.py: Prints to screen from a given *.npy file containing a NumPy structured array. Use done to
print only the lines containing "sim_ended" points. Example:

./print_npy.py run_libe_forces_results_History_length=1000_evals=8.npy done

• print_fields.py: Prints to screen from a given *.npy file containing a NumPy structured array. This is a
more versatile version of print_npy.py that allows the user to select fields to print and boolean conditions
determining which rows are printed (see ./print_fields.py -h for usage).

• compare_npy.py: Compares either two provided *.npy files or one provided *.npy file with an expected
results file (by default located at ../expected.npy). A tolerance is given on floating-point results, and NANs are
compared as equal. Variable fields (such as those containing a time) are ignored. These fields may need to be
modified depending on the user’s history array.

• plot_pareto_2d.py: Loop through objective points in f and extract the Pareto front. Arguments are an *.npy
file and a budget.

• plot_pareto_3d.py: Loop through objective points in f and extract the Pareto front. Arguments are an *.npy
file and a budget.

• print_pickle.py: Prints to screen from a given *.pickle file. Example:

./print_pickle.py persis_info_length=1000_evals=1000_workers=2.pickle

2.3. Output Management 37

libEnsemble User Manual, Release 1.3.0+dev

2.4 History Array

H: numpy structured array
A record of runtime attributes and output data for all ensemble members.

2.4.1 Overview

libEnsemble uses a NumPy structured array to store information about each point (ensemble member) generated and
processed in the ensemble.

The manager maintains a global copy. Each row contains:

1. Data generated by the gen_f

2. Resultant output from the sim_f

3. Reserved fields containing metadata

When the history array is initialized, it creates fields for each gen_specs["out"] and sim_specs["out"] entry.
These entries may resemble:

gen_specs["out"] = [("x", float, 2), ("theta", int)]
sim_specs["out"] = [("f", float)]

Therefore, the gen_f and sim_f must return output as NumPy structured arrays for slotting into these fields.

Ensure input/output field names for a function match each other or a reserved field:

gen_specs["out"] = [("x", float, 2), ("theta", int)] # produces "x" and "theta"
sim_specs["in"] = ["x", "theta", "sim_id"] # accepts "x", "theta" and "sim_id", a␣
→˓reserved field

2.4.2 Reserved Fields

User fields and reserved fields are combined together in the final History array returned by libEnsemble.

These reserved fields can be modified to adjust how/when a point is evaluated:

• sim_id [int]: Each unit of work must have a sim_id. This can be set by the generator or by the manager by
default. Users should ensure these IDs are sequential and unique when running multiple generators.

• cancel_requested [bool]: Can be set True in a generator to request attempted cancellation of the correspond-
ing simulation.

The following fields are automatically populated by libEnsemble:

gen_worker [int]: Worker that generated this entry

gen_started_time [float]: Time gen_worker was initiated that produced this entry

gen_ended_time [float]: Time gen_worker requested this entry

sim_worker [int]: Worker that did (or is doing) the sim evaluation for this entry

sim_started [bool]: True if entry was given to sim_worker for sim evaluation

sim_started_time [float]: Time entry was given to sim_worker for a sim evaluation

sim_ended [bool]: True if entry’s sim evaluation completed

38 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

sim_ended_time [float]: Time entry’s sim evaluation completed

gen_informed [bool]: True if gen_worker was informed about the sim evaluation of this entry

gen_informed_time [float]: Time gen_worker was informed about the sim evaluation of this entry

kill_sent [bool]: True if a kill signal was sent to worker for this entry

Other than "sim_id" and cancel_requested, these fields cannot be overwritten by user functions unless
libE_specs["safe_mode"] is set to False.

Warning: Adjusting values in protected fields may crash libEnsemble.

2.4.3 Example Workflow updating History

Step 1: The history array is initialized on the manager

The history array is initialized using the libEnsemble reserved field and the user-provided gen_specs["out"] and
sim_specs["out"] entries. In the figure below, only the reserved fields: sim_id, sim_started, and sim_ended
are shown for brevity.

gen_f and sim_f functions accept a local history array as the first argument that contains only the rows and fields
specified. For new function calls these will be specified by either gen_specs["in"] or sim_specs["in"]. For
generators this may be empty.

Step 2: Persistent generator gen_f is called

2.4. History Array 39

libEnsemble User Manual, Release 1.3.0+dev

Step 3: Points are given out for sim_f to evaluate

Step 4: Results returned to persistent generator gen_f

40 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

2.5 Resource Manager

libEnsemble comes with built-in resource management. This entails the detection of available resources (e.g., nodelists,
core counts, and GPUs), and the allocation of resources to workers.

Resource management can be disabled by setting libE_specs["disable_resource_manager"] = True. This
will prevent libEnsemble from doing any resource detection or management.

2.5.1 Zero-resource workers

Users with persistent gen_f functions may notice that the persistent workers are still automatically assigned resources.
This can be wasteful if those workers only run gen_f functions in-place (i.e., they do not use the Executor to submit
applications to allocated nodes). Suppose the user is using the parse_args() function and runs:

python run_ensemble_persistent_gen.py --comms local --nworkers 3

If three nodes are available in the node allocation, the result may look like the following.

2.5. Resource Manager 41

libEnsemble User Manual, Release 1.3.0+dev

To avoid the the wasted node above, add an extra worker:

python run_ensemble_persistent_gen.py --comms local --nworkers 4

and in the calling script (run_ensemble_persistent_gen.py), explicitly set the number of resource sets to the number of
workers that will be running simulations.

nworkers, is_manager, libE_specs, _ = parse_args()
libE_specs["num_resource_sets"] = nworkers - 1

When the num_resource_sets option is used, libEnsemble will use the dynamic resource scheduler, and any worker
may assign work to any node. This works well for most users.

42 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Optional: An alternative way to express the above would be to use the command line:

python run_ensemble_persistent_gen.py --comms local --nsim_workers 3

This would automatically set the num_resource_sets option and add a single worker for the persistent generator - a
common use-case.

In general, the number of resource sets should be set to enable the maximum concurrency desired by the ensemble,
taking into account generators and simulators.

Users can set generator resources using the libE_specs options gen_num_procs and/or gen_num_gpus, which take
integer values. If only gen_num_gpus is set, then the number of processors is set to match.

To vary generator resources, persis_info settings can be used in allocation functions before calling the gen_work
support function. This takes the same options (gen_num_procs and gen_num_gpus).

Alternatively, the setting persis_info["gen_resources"] can also be set to a number of resource sets.

The available nodes are always divided by the number of resource sets, and there may be multiple nodes or a partition
of a node in each resource set. If the split is uneven, resource sets are not split between nodes. For example, if there
are two nodes and five resource sets, one node will have three resource sets, and the other will have two.

Placing zero-resource functions on a fixed worker

If the generator must always be on worker one, then instead of using num_resource_sets, use the
zero_resource_workers libE_specs option:

libE_specs["zero_resource_workers"] = [1]

in the calling script and worker one will not be allocated resources. In general, set the parameter
zero_resource_workers to a list of worker IDs that should not have resources assigned.

This approach can be useful if running in distributed mode.

2.5. Resource Manager 43

libEnsemble User Manual, Release 1.3.0+dev

The use of the zero_resource_workers libE_specs option must be supported by the allocation function, see
start_only_persistent)

2.5.2 Dynamic Assignment of Resources

Overview

libEnsemble comes with built-in resource management. This entails the detection of available resources
(e.g., nodelists, core counts, and GPUs), and the allocation of resources to workers.

By default, the provisioned resources are divided by the number of workers. libEnsemble’s MPI Executor is aware of
these supplied resources, and if not given any of num_nodes, num_procs, or procs_per_node in the submit function,
it will try to use all nodes and CPU cores available to the worker.

Detected resources can be overridden using the libE_specs option resource_info.

Variable resource assignment

Note: As of version 0.10.0, the concept of resource sets is not needed. The generator can use special
gen_specs["out"] fields of num_procs and num_gpus for each simulation generated. These will be used to as-
sign resources and will be automatically passed through and used by the executor (if no other run configuration is
given in the submit line). Furthermore, GPUs will be automatically assigned in the correct way for the given system
(including Nvidia, AMD, and Intel GPUs); you do not need to set CUDA_VISIBLE_DEVICES or equivalent. Example:
test_GPU_variable_resources.py

In slightly more detail, the resource manager divides resources into resource sets. One resource set is the smallest
unit of resources that can be assigned (and dynamically reassigned) to workers. By default, the provisioned resources
are divided by the number of workers (excluding any workers given in the zero_resource_workers libE_specs
option). However, it can also be set directly by the num_resource_sets libE_specs option. If the latter is set, the
dynamic resource assignment algorithm will always be used.

If there are more resource sets than nodes, then the resource sets on each node will be given a slot number, enumerated
from zero. For example, if there are three slots on a node, they will have slot numbers 0, 1, and 2.

The resource manager will not split a resource set over nodes, rather the resource sets on each node will be the integer
division of resource sets over nodes, with the remainder dealt out from the first node. Even breakdowns are generally
preferable, however.

For example, say a given system has four GPUs per node, and the user has run libEnsemble on two nodes, with eight
workers. The default division of resources would be:

44 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_GPU_variable_resources.py

libEnsemble User Manual, Release 1.3.0+dev

Variable Size simulations

A dynamic assignment of resources to simulation workers can be achieved by the convention of using a field in the
history array called resource_sets. While this is technically a user space field, the allocation functions are set up to
read this field, check available resources, and assign resource sets to workers, along with the work request (simulation).

In the calling script, use a gen_specs["out"] field called resource_sets:

gen_specs = {
"gen_f": gen_f,
"in": ["sim_id"],
"out": [

("priority", float),
("resource_sets", int),
("x", float, n),

],
}

For an example calling script, see the regression test test_persistent_sampling_CUDA_variable_resources.py

In the generator, the resource_sets field must be set to a value for each point (simulation) generated (if it is not set,
it will have the initialized value of zero, and supply zero resources).

H_o = np.zeros(b, dtype=gen_specs["out"])
for i in range(0, b):

H_o["x"][i] = x[b]
H_o["resource_sets"][i] = sim_size[b]

For an example generator, see the uniform_sample function in persistent_sampling_var_resources.py

When the allocation function assigns the points to workers for evaluation, it will check if the requested number of
resource sets are available for each point to evaluate. If they are not available, then the evaluation will not be given to a
worker until enough resources become available. This functionality is built into the supplied allocation functions and
generally requires no modification from the user.

2.5. Resource Manager 45

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_sampling_CUDA_variable_resources.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/gen_funcs/persistent_sampling_var_resources.py

libEnsemble User Manual, Release 1.3.0+dev

The particular nodes and slots assigned to each worker will be determined by the libEnsemble built-in scheduler,
although users can provide an alternative scheduler via the allocation function. In short, the scheduler will prefer
fitting simulations onto a node, and using even splits across nodes, if necessary.

Accessing resources from the simulation function

In the user’s simulation function, the resources supplied to the worker can be interrogated directly via the
resources class attribute. libEnsemble’s executors (e.g., the MPI Executor) are aware of these supplied re-
sources, and if not given any of num_nodes, num_procs, or procs_per_node in the submit function, it will try to
use all nodes and CPU cores available.

var_resources.py has two examples of how resource information for the worker may be accessed in the sim function
(multi_points_with_variable_resources and CUDA_variable_resources).

For example, in CUDA_variable_resources, the environment variable CUDA_VISIBLE_DEVICES is set to slots:

resources = Resources.resources.worker_resources
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES") # Use convenience function.
num_nodes = resources.local_node_count
cores_per_node = resources.slot_count # One CPU per GPU

In the figure above, this would result in worker one setting:

export CUDA_VISIBLE_DEVICES=0,1

while worker five would set:

export CUDA_VISIBLE_DEVICES=2,3

Note: If the user sets the number of resource sets directly using the num_resource_sets libE_specs option, then
the dynamic resource assignment algorithm will always be used. If resource_sets is not a field in H, then each
worker will use one resource set.

46 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/sim_funcs/var_resources.py

libEnsemble User Manual, Release 1.3.0+dev

Resource Scheduler Options

The following options are available for the built-in scheduler and can be set by a dictionary supplied via
libE_specs["scheduler_opts"]

split2fit [boolean]
Try to split resource sets across more nodes if space is not currently available on the minimum node
count required. Allows more efficient scheduling. Default: True

match_slots [boolean]:
When splitting resource sets across multiple nodes, slot IDs must match. Useful if setting an envi-
ronment variable such as CUDA_VISIBLE_DEVICES to specific slot counts, which should match over
multiple nodes. Default: True

In the following example, assume the next simulation requires four resource sets. This could fit on one node if all slots
were free, but only two are free on each node.

split2fit allows the two resource sets to be used on each node. However, the task will not be scheduled unless
match_slots is set to False:

libE_specs["scheduler_opts"] = {"match_slots": False}

This is only recommended if not enumerating resources to slot IDs (e.g., via CUDA_VISIBLE_DEVICES).

Note that if six resource sets were requested, then they would be split three per node, even if split2fit is False, as
this could otherwise never be scheduled.

Varying generator resources

By default, generators are not allocated resources in dynamic mode. Fixed resources for the generator can be set using
the libE_specs options gen_num_procs and gen_num_gpus, which take integer values. If only gen_num_gpus is set,
then the number of processors will be set to match.

To vary generator resources, persis_info settings can be used in allocation functions before calling the gen_work
support function. This takes the same options (gen_num_procs and gen_num_gpus).

Alternatively, the setting persis_info["gen_resources"] can also be set to a number of resource sets.

Note that persistent workers maintain their resources until they come out of a persistent state.

2.5. Resource Manager 47

libEnsemble User Manual, Release 1.3.0+dev

Example scenarios

Persistent generator

You have one persistent generator and want eight workers to run concurrent simulations. In this case you can run with
nine workers.

Either explicitly set eight resource sets (recommended):

libE_specs["num_resource_sets"] = 8

Or if the generator should always be the same worker, use one zero-resource worker:

libE_specs["zero_resource_workers"] = [1]

For the second option, an allocation function supporting zero-resource workers must be used.

Using the two-node example above, the initial worker mapping in this example will be:

Using large resource sets

Note that resource_sets and slot numbers are based on workers by default. If you halved the workers in this example
you would have the following (each resource set has twice the CPUs and GPUs).

To set CUDA_VISIBLE_DEVICES to slots in this case, use the multiplier argument in the set_env_to_slots
function:

48 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

resources = Resources.resources.worker_resources
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES", multiplier=2)

Setting more resource sets than workers

Resource sets can be set to more than the number of corresponding workers. In this example there are 5 workers (one
for the generator) and 8 resource sets. The additional resources will be used for larger simulations.

This could be achieved by setting:

libE_specs["num_resource_sets"] = 8

and running on 5 workers.

Also, this can be set on the command line as a convenience.

python run_ensemble.py --comms local --nworkers 5 --nresource_sets 8

2.5.3 Resource Detection

The resource manager can detect system resources, and partition these to workers. The MPI Executor accesses the
resources available to the current worker when launching tasks.

Node-lists are detected by an environment variable on the following systems:

Scheduler Nodelist Env. variable
SLURM SLURM_NODELIST
COBALT COBALT_PARTNAME
LSF LSB_HOSTS/LSB_MCPU_HOSTS
PBS PBS_NODEFILE

These environment variable names can be modified via the resource_info libE_specs option.

On other systems you may have to supply a node list in a file called node_list in your run directory. For example, on
ALCF system Cooley, the session node list can be obtained as follows:

cat $COBALT_NODEFILE > node_list

2.5. Resource Manager 49

https://www.alcf.anl.gov/alcf-resources/cooley

libEnsemble User Manual, Release 1.3.0+dev

Resource detection can be disabled by setting libE_specs["disable_resource_manager"] = True, and users
can simply supply run configuration options on the Executor submit line.

This will usually work sufficiently on systems that have application-level scheduling and queuing (e.g., jsrun on
Summit). However, on many cluster and multi-node systems, if the built-in resource manager is disabled, then runs
without a hostlist or machinefile supplied may be undesirably scheduled to the same nodes.

System detection for resources can be overridden using the resource_info libE_specs option.

2.5.4 Scheduler Module

The scheduler is called within the scope of the allocation function, usually via the alloc_support module function
assign_resources() (either called directly or via sim_work() or gen_work()), which is a wrapper for the main
scheduler function assign_resources().

The alloc_support module allows users to supply an alternative scheduler that fits this interface. This could be achieved,
for example, by inheriting the built-in scheduler and making modifications.

Options can also be provided to the scheduler though the libE_specs["scheduler_opts"] dictionary.

class resources.scheduler.ResourceScheduler(user_resources=None, sched_opts={})
Calculates and returns resource set ids from a dictionary of resource sets by group. The available resource sets
are read initially from the resources module or from a resources object passed in.

Resource sets are locally provisioned to work items by a call to the assign_resources function, and a cache of
available resource sets is maintained for the life of the object (usually corresponding to one call of the allocation
function). Note that work item resources are formally assigned to workers only when a work item is sent to the
worker.

__init__(user_resources=None, sched_opts={})
Initiate a ResourceScheduler object

Parameters

• user_resources (Resources, optional) – A resources object. If present overrides
the class variable.

• sched_opts (dict, optional) – A dictionary of scheduler options. Passed via
libE_specs["scheduler_opts"]

The supported fields for sched_opts are:

"split2fit" [Boolean]:
Try to split resource sets across more nodes if space is not currently
available on the minimum node count required. Allows more efficient
scheduling.
Default: True

"match_slots" [Boolean]:
When splitting resource sets across multiple nodes, slot IDs must match.
Useful if setting an environment variable such as ``CUDA_VISIBLE_DEVICES``
to specific slots, which should match over multiple nodes.
Default: True

assign_resources(rsets_req, use_gpus=None, user_params=[])
Schedule resource sets to a work item if possible.

If the resources required are less than one node, they will be allocated to the smallest available sufficient
slot.

50 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

If the resources required are more than one node, then the scheduler will attempt to find an even split. If
no even split is possible, then enough additional resource sets will be assigned to enable an even split.

Returns a list of resource set IDs or raises an exception (either InsufficientResourcesError or Insufficient-
FreeResources).

2.5.5 Worker Resources Module

The worker resources module can be interrogated by the user function on a worker to obtain the following attributes.
The convenience functions below can also be used.

class resources.worker_resources.WorkerResources(num_workers, resources, workerID)

Bases: RSetResources

Provide system resources per worker to libEnsemble and executor.

Object Attributes:

Some of these attributes may be updated as the ensemble progresses.

rsets below is used to abbreviate resource sets.

Variables

• workerID (int) – workerID for this worker.

• local_nodelist (list) – A list of all nodes assigned to this worker.

• rset_team (list) – List of rset IDs currently assigned to this worker.

• num_rsets (int) – The number of resource sets assigned to this worker.

• slots (dict) – A dictionary with a list of slot IDs for each node.

• even_slots (bool) – True if each node has the same number of slots.

• matching_slots (bool) – True if each node has matching slot IDs.

• slot_count (int) – The number of slots per node if even_slots is True, else None.

• slots_on_node (list) – A list of slots IDs if matching_slots is True, else None.

• local_node_count (int) – The number of nodes available to this worker (rounded up to
whole number).

• rsets_per_node (int) – The number of rsets per node (if a rset > 1 node, will be 1).

The worker_resources attributes can be queried, and convenience functions called, via the resources class at-
tribute. For example:

With resources imported:

from libensemble.resources.resources import Resources

A user function (sim/gen) may do:

resources = Resources.resources.worker_resources
num_nodes = resources.local_node_count
cores_per_node = resources.slot_count # One CPU per GPU
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES") # Use convenience function.

2.5. Resource Manager 51

libEnsemble User Manual, Release 1.3.0+dev

Note that slots are resource sets enumerated on a node (starting with zero). If a resource set has more than one
node, then each node is considered to have slot zero.

If even_slots is True, then the attributes slot_count will give the number of slots on each node. If
matching_slots is True, then slots_on_node will give the slot IDs for all nodes. These can be used for
simplicity; otherwise, the slots dictionary can be used to get information for each node.

get_slots_as_string(multiplier=1, delimiter=',', limit=None)
Returns list of slots as a string

Parameters

• multiplier – Optional int. Assume this many items per slot.

• delimiter – Optional int. Delimiter for output string.

• limit – Optional int. Maximum slots (truncate list after this many slots).

set_env_to_slots(env_var, multiplier=1, delimiter=',')
Sets the given environment variable to slots

Parameters

• env_var – String. Name of environment variable to set.

• multiplier – Optional int. Assume this many items per slot.

• delimiter – Optional int. Delimiter for output string.

Example usage in a sim function:

With resources imported:

from libensemble.resources.resources import Resources

Obtain worker resources:

resources = Resources.resources.worker_resources
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES")

set_env_to_gpus(env_var=None, delimiter=',')
Sets the given environment variable to GPUs

Parameters

• env_var – String. Name of environment variable to set.

• delimiter – Optional int. Delimiter for output string.

Example usage in a sim function:

With resources imported:

from libensemble.resources.resources import Resources

Obtain worker resources:

resources = Resources.resources.worker_resources
resources.set_env_to_gpus("CUDA_VISIBLE_DEVICES")

52 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

2.6 Writing User Functions

User functions typically require only some familiarity with NumPy, but if they conform to the user function
APIs, they can incorporate methods from machine-learning, mathematics, resource management, or other li-
braries/applications.

These guides describe common development patterns and optional components:

2.6.1 Generator Functions

Generator and Simulator functions have relatively similar interfaces.

Writing a Generator

Non-decorated

def my_generator(Input, persis_info, gen_specs, libE_info):
batch_size = gen_specs["user"]["batch_size"]

Output = np.zeros(batch_size, gen_specs["out"])
...
Output["x"], persis_info = generate_next_simulation_inputs(Input["f"], persis_info)

return Output, persis_info

Decorated

from libensemble.specs import input_fields, output_data

@input_fields(["f"])
@output_data([("x", float)])
def my_generator(Input, persis_info, gen_specs, libE_info):

batch_size = gen_specs["user"]["batch_size"]

Output = np.zeros(batch_size, gen_specs["out"])
...
Output["x"], persis_info = generate_next_simulation_inputs(Input["f"], persis_info)

return Output, persis_info

Most gen_f function definitions written by users resemble:

def my_generator(Input, persis_info, gen_specs, libE_info):

where:

• Input is a selection of the History array, a NumPy structured array.

• persis_info is a dictionary containing state information.

• gen_specs is a dictionary of generator parameters.

2.6. Writing User Functions 53

http://www.numpy.org

libEnsemble User Manual, Release 1.3.0+dev

• libE_info is a dictionary containing miscellaneous entries.

Valid generator functions can accept a subset of the above parameters. So a very simple generator can start:

def my_generator(Input):

If gen_specs was initially defined:

Non-decorated function

gen_specs = GenSpecs(
gen_f=my_generator,
inputs=["f"],
outputs=["x", float, (1,)],
user={"batch_size": 128},

)

Decorated function

gen_specs = GenSpecs(
gen_f=my_generator,
user={"batch_size": 128},

)

Then user parameters and a local array of outputs may be obtained/initialized like:

batch_size = gen_specs["user"]["batch_size"]
Output = np.zeros(batch_size, dtype=gen_specs["out"])

This array should be populated by whatever values are generated within the function:

Output["x"], persis_info = generate_next_simulation_inputs(Input["f"], persis_info)

Then return the array and persis_info to libEnsemble:

return Output, persis_info

Between the Output definition and the return, any computation can be performed. Users can try an executor to
submit applications to parallel resources, or plug in components from other libraries to serve their needs.

Note: State gen_f information like checkpointing should be appended to persis_info.

54 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Persistent Generators

While non-persistent generators return after completing their calculation, persistent generators do the following in a
loop:

1. Receive simulation results and metadata; exit if metadata instructs.

2. Perform analysis.

3. Send subsequent simulation parameters.

Persistent generators don’t need to be re-initialized on each call, but are typically more complicated. The persistent
APOSMM optimization generator function included with libEnsemble maintains local optimization subprocesses based
on results from complete simulations.

Use GenSpecs.persis_in to specify fields to send back to the generator throughout the run. GenSpecs.inputs
only describes the input fields when the function is first called.

Functions for a persistent generator to communicate directly with the manager are available in the
libensemble.tools.persistent_support class.

Sending/receiving data is supported by the PersistentSupport class:

from libensemble.tools import PersistentSupport
from libensemble.message_numbers import STOP_TAG, PERSIS_STOP, EVAL_GEN_TAG, FINISHED_
→˓PERSISTENT_GEN_TAG

my_support = PersistentSupport(libE_info, EVAL_GEN_TAG)

Implementing functions from the above class is relatively simple:

send

libensemble.tools.persistent_support.PersistentSupport.send(self , output, calc_status=0,
keep_state=False)

Send message from worker to manager.

Parameters

• output (ndarray[Any, dtype[_ScalarType_co]]) – Output array to be sent to man-
ager.

• calc_status (int) – (Optional) Provides a task status.

• keep_state – (Optional) If True the manager will not modify its record of the workers state
(usually the manager changes the worker’s state to inactive, indicating the worker is ready to
receive more work, unless using active receive mode).

Return type
None

This function call typically resembles:

my_support.send(local_H_out[selected_IDs])

Note that this function has no return.

2.6. Writing User Functions 55

libEnsemble User Manual, Release 1.3.0+dev

recv

libensemble.tools.persistent_support.PersistentSupport.recv(self , blocking=True)
Receive message to worker from manager.

Parameters
blocking (bool) – (Optional) If True (default), will block until a message is received.

Returns
message tag, Work dictionary, calc_in array

Return type
(<class ‘int’>, <class ‘dict’>, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]])

This function call typically resembles:

tag, Work, calc_in = my_support.recv()

if tag in [STOP_TAG, PERSIS_STOP]:
cleanup()
break

The logic following the function call is typically used to break the persistent generator’s main loop and return.

send_recv

libensemble.tools.persistent_support.PersistentSupport.send_recv(self , output, calc_status=0)
Send message from worker to manager and receive response.

Parameters

• output (ndarray[Any, dtype[_ScalarType_co]]) – Output array to be sent to man-
ager.

• calc_status (int) – (Optional) Provides a task status.

Returns
message tag, Work dictionary, calc_in array

Return type
(<class ‘int’>, <class ‘dict’>, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]])

This function performs both of the previous functions in a single statement. Its usage typically resembles:

tag, Work, calc_in = my_support.send_recv(local_H_out[selected_IDs])
if tag in [STOP_TAG, PERSIS_STOP]:

cleanup()
break

Once the persistent generator’s loop has been broken because of the tag from the manager, it should return with an
additional tag:

return local_H_out, persis_info, FINISHED_PERSISTENT_GEN_TAG

See calc_status for more information about the message tags.

56 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Active receive mode

By default, a persistent worker is expected to receive and send data in a ping pong fashion. Alternatively, a worker can
be initiated in active receive mode by the allocation function (see start_only_persistent). The persistent worker
can then send and receive from the manager at any time.

Ensure there are no communication deadlocks in this mode. In manager-worker message exchanges, only the worker-
side receive is blocking by default (a non-blocking option is available).

Cancelling Simulations

Previously submitted simulations can be cancelled by sending a message to the manager:

libensemble.tools.persistent_support.PersistentSupport.request_cancel_sim_ids(self , sim_ids)
Request cancellation of sim_ids.

Parameters
sim_ids (List[int]) – A list of sim_ids to cancel.

A message is sent to the manager to mark requested sim_ids as cancel_requested.

• If a generated point is cancelled by the generator before sending to another worker for simulation, then it won’t
be sent.

• If that point has already been evaluated by a simulation, the cancel_requested field will remain True.

• If that point is currently being evaluated, a kill signal will be sent to the corresponding worker; it must be
manually processed in the simulation function.

The Borehole Calibration tutorial gives an example of the capability to cancel pending simulations.

Modification of existing points

To change existing fields of the History array, create a NumPy structured array where the dtype contains the sim_id
and the fields to be modified. Send this array with keep_state=True to the manager. This will overwrite the manager’s
History array.

For example, the cancellation function request_cancel_sim_ids could be replicated by the following (where
sim_ids_to_cancel is a list of integers):

Send only these fields to existing H rows and libEnsemble will slot in the change.
H_o = np.zeros(len(sim_ids_to_cancel), dtype=[("sim_id", int), ("cancel_requested",␣
→˓bool)])
H_o["sim_id"] = sim_ids_to_cancel
H_o["cancel_requested"] = True
ps.send(H_o, keep_state=True)

2.6. Writing User Functions 57

libEnsemble User Manual, Release 1.3.0+dev

Generator initiated shutdown

If using a supporting allocation function, the generator can prompt the ensemble to shutdown by simply exiting the
function (e.g., on a test for a converged value). For example, the allocation function start_only_persistent closes
down the ensemble as soon as a persistent generator returns. The usual return values should be given.

Examples

Examples of non-persistent and persistent generator functions can be found here.

2.6.2 Simulator Functions

Simulator and Generator functions have relatively similar interfaces.

Writing a Simulator

Non-decorated

def my_simulation(Input, persis_info, sim_specs, libE_info):
batch_size = sim_specs["user"]["batch_size"]

Output = np.zeros(batch_size, sim_specs["out"])
...
Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

return Output, persis_info

Decorated

from libensemble.specs import input_fields, output_data

@input_fields(["x"])
@output_data([("f", float)])
def my_simulation(Input, persis_info, sim_specs, libE_info):

batch_size = sim_specs["user"]["batch_size"]

Output = np.zeros(batch_size, sim_specs["out"])
...
Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

return Output, persis_info

Most sim_f function definitions written by users resemble:

def my_simulation(Input, persis_info, sim_specs, libE_info):

where:

• Input is a selection of the History array, a NumPy structured array.

58 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

• persis_info is a dictionary containing state information.

• sim_specs is a dictionary of simulation parameters.

• libE_info is a dictionary containing libEnsemble-specific entries.

Valid simulator functions can accept a subset of the above parameters. So a very simple simulator function can start:

def my_simulation(Input):

If sim_specs was initially defined:

Non-decorated function

sim_specs = SimSpecs(
sim_f=my_simulation,
inputs=["x"],
outputs=["f", float, (1,)],
user={"batch_size": 128},

)

Decorated function

sim_specs = SimSpecs(
sim_f=my_simulation,
user={"batch_size": 128},

)

Then user parameters and a local array of outputs may be obtained/initialized like:

batch_size = sim_specs["user"]["batch_size"]
Output = np.zeros(batch_size, dtype=sim_specs["out"])

This array should be populated with output values from the simulation:

Output["f"], persis_info = do_a_simulation(Input["x"], persis_info)

Then return the array and persis_info to libEnsemble:

return Output, persis_info

Between the Output definition and the return, any computation can be performed. Users can try an executor to
submit applications to parallel resources, or plug in components from other libraries to serve their needs.

2.6. Writing User Functions 59

libEnsemble User Manual, Release 1.3.0+dev

Executor

libEnsemble’s Executors are commonly used within simulator functions to launch and monitor applications. An excel-
lent overview is already available here.

See the Executor with Electrostatic Forces tutorial for an additional example to try out.

Persistent Simulators

Simulator functions can also be written in a persistent fashion. See the here for a general API overview of writing
persistent generators, since the interface is largely identical. The only differences are to pass EVAL_SIM_TAG when in-
stantiating a PersistentSupport class instance and to return FINISHED_PERSISTENT_SIM_TAG when the simulator
function returns.

Note: An example routine using a persistent simulator can be found in test_persistent_sim_uniform_sampling.

2.6.3 Allocation Functions

Although the included allocation functions are sufficient for most users, those who want to fine-tune how data or
resources are allocated to their generator or simulator can write their own.

The alloc_f is unique since it is called by libEnsemble’s manager instead of a worker.

For allocation functions, as with the other user functions, the level of complexity can vary widely. We encourage
experimenting with:

1. Prioritization of simulations

2. Sending results immediately or in batch

3. Assigning varying resources to evaluations

Example

Listing 6: libensemble.alloc_funcs.fast_alloc.give_sim_work_first

from libensemble.tools.alloc_support import AllocSupport, InsufficientFreeResources

def give_sim_work_first(W, H, sim_specs, gen_specs, alloc_specs, persis_info, libE_info):
"""
This allocation function gives (in order) entries in ``H`` to idle workers
to evaluate in the simulation function. The fields in ``sim_specs["in"]``
are given. If all entries in `H` have been given a be evaluated, a worker
is told to call the generator function, provided this wouldn't result in
more than ``alloc_specs["user"]["num_active_gen"]`` active generators.

This fast_alloc variation of give_sim_work_first is useful for cases that
simply iterate through H, issuing evaluations in order and, in particular,
is likely to be faster if there will be many short simulation evaluations,
given that this function contains fewer column length operations.

tags: alloc, simple, fast
(continues on next page)

60 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_sim_uniform_sampling.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

.. seealso::
`test_fast_alloc.py <https://github.com/Libensemble/libensemble/blob/develop/

→˓libensemble/tests/functionality_tests/test_fast_alloc.py>`_ # noqa
"""

if libE_info["sim_max_given"] or not libE_info["any_idle_workers"]:
return {}, persis_info

user = alloc_specs.get("user", {})
manage_resources = libE_info["use_resource_sets"]

support = AllocSupport(W, manage_resources, persis_info, libE_info)

gen_count = support.count_gens()
Work = {}
gen_in = gen_specs.get("in", [])

Give sim work if possible
for wid in support.avail_worker_ids(gen_workers=False):

persis_info = support.skip_canceled_points(H, persis_info)
if persis_info["next_to_give"] < len(H):

try:
Work[wid] = support.sim_work(wid, H, sim_specs["in"], [persis_info["next_

→˓to_give"]], [])
except InsufficientFreeResources:

break
persis_info["next_to_give"] += 1

Give gen work if possible
if persis_info["next_to_give"] >= len(H):

for wid in support.avail_worker_ids(gen_workers=True):
if wid not in Work and gen_count < user.get("num_active_gens", gen_count +␣

→˓1):
return_rows = range(len(H)) if gen_in else []
try:

Work[wid] = support.gen_work(wid, gen_in, return_rows, persis_info.
→˓get(wid))

except InsufficientFreeResources:
break

gen_count += 1
persis_info["total_gen_calls"] += 1

return Work, persis_info

Most alloc_f function definitions written by users resemble:

def my_allocator(W, H, sim_specs, gen_specs, alloc_specs, persis_info, libE_info):

where:

• W is an array containing worker state info

• H is the trimmed History array, containing rows from the generator

2.6. Writing User Functions 61

libEnsemble User Manual, Release 1.3.0+dev

• libE_info is a set of statistics to determine the progress of work or exit conditions

Most users first check that it is appropriate to allocate work:

if libE_info["sim_max_given"] or not libE_info["any_idle_workers"]:
return {}, persis_info

If the allocation is to continue, a support class is instantiated and a Work dictionary is initialized:

manage_resources = "resource_sets" in H.dtype.names or libE_info["use_resource_sets"]
support = AllocSupport(W, manage_resources, persis_info, libE_info)
Work = {}

This Work dictionary is populated with integer keys wid for each worker and dictionary values to give to those workers:

Example Work

{
1: {

"H_fields": ["x"],
"persis_info": {"rand_stream": RandomState(...) at ..., "worker_num": 1},
"tag": 1,
"libE_info": {"H_rows": array([368])}

},

2: {
"H_fields": ["x"],
"persis_info": {"rand_stream": RandomState(...) at ..., "worker_num": 2},
"tag": 1,
"libE_info": {"H_rows": array([369])}

},

3: {
"H_fields": ["x"],
"persis_info": {"rand_stream": RandomState(...) at ..., "worker_num": 3},
"tag": 1,
"libE_info": {"H_rows": array([370])}

},
...

}

This Work dictionary instructs each worker to call the sim_f (tag: 1) with data from "x" and a given "H_row"
from the History array. A worker-specific persis_info is also given.

Constructing these arrays and determining which workers are available for receiving data is simplified by the
AllocSupport class available within the libensemble.tools.alloc_support module:

62 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

AllocSupport

class libensemble.tools.alloc_support.AllocSupport(W , manage_resources=False, persis_info={},
libE_info={}, user_resources=None,
user_scheduler=None)

A helper class to assist with writing allocation functions.

This class contains methods for common operations like populating work units, determining which workers are
available, evaluating what values need to be distributed to workers, and others.

Note that since the alloc_f is called periodically by the Manager, this class instance (if used) will be recre-
ated/destroyed on each loop.

__init__(W , manage_resources=False, persis_info={}, libE_info={}, user_resources=None,
user_scheduler=None)

Instantiate a new AllocSupport instance

W is passed in for convenience on init; it is referenced by the various methods, but never modified.

By default, an AllocSupport instance uses any initiated libEnsemble resource module and the built-in
libEnsemble scheduler.

Parameters

• W – A Worker array

• manage_resources – (Optional) Boolean for if to assign resource sets when creating work
units.

• persis_info – (Optional) A dictionary of persistent information..

• scheduler_opts – (Optional) A dictionary of options to pass to the resource scheduler.

• user_resources – (Optional) A user supplied resources object.

• user_scheduler – (Optional) A user supplied user_scheduler object.

assign_resources(rsets_req, use_gpus=None, user_params=[])
Schedule resource sets to a work record if possible.

For default scheduler, if more than one group (node) is required, will try to find even split, otherwise
allocates whole nodes.

Raises InsufficientFreeResources if the required resources are not currently available, or
InsufficientResourcesError if the required resources do not exist.

Parameters

• rsets_req – Int. Number of resource sets to request.

• use_gpus – Bool. Whether to use GPU resource sets.

• user_params – List of Integers. User parameters num_procs, num_gpus.

Returns
List of Integers. Resource set indices assigned.

avail_worker_ids(persistent=None, active_recv=False, zero_resource_workers=None,
gen_workers=None)

Returns available workers as a list of IDs, filtered by the given options.

Parameters

2.6. Writing User Functions 63

libEnsemble User Manual, Release 1.3.0+dev

• persistent – (Optional) Int. Only return workers with given persis_state (1=sim,
2=gen).

• active_recv – (Optional) Boolean. Only return workers with given active_recv state.

• zero_resource_workers – (Optional) Boolean. Only return workers that require no
resources.

• gen_workers – (Optional) Boolean. If True, return gen-only workers. If False, return all
other workers.

Returns
List of worker IDs.

If there are no zero resource workers defined, then the zero_resource_workers argument will be ignored.

count_gens()

Returns the number of active generators.

test_any_gen()

Returns True if a generator worker is active.

count_persis_gens()

Return the number of active persistent generators.

sim_work(wid, H, H_fields, H_rows, persis_info, **libE_info)
Add sim work record to given Work dictionary.

Includes evaluation of required resources if the worker is not in a persistent state.

Parameters

• wid – Int. Worker ID.

• H – History array. For parsing out requested resource sets.

• H_fields – Which fields from H to send.

• H_rows – Which rows of H to send.

• persis_info – Worker specific persis_info dictionary.

Returns
a Work entry.

Additional passed parameters are inserted into libE_info in the resulting work record.

If rset_team is passed as an additional parameter, it will be honored, assuming that any resource checking
has already been done.

gen_work(wid, H_fields, H_rows, persis_info, **libE_info)
Add gen work record to given Work dictionary.

Includes evaluation of required resources if the worker is not in a persistent state.

Parameters

• Work – Work dictionary.

• wid – Worker ID.

• H_fields – Which fields from H to send.

• H_rows – Which rows of H to send.

64 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

• persis_info – Worker specific persis_info dictionary.

Returns
A Work entry.

Additional passed parameters are inserted into libE_info in the resulting work record.

If rset_team is passed as an additional parameter, it will be honored, and assume that any resource check-
ing has already been done. For example, passing rset_team=[], would ensure that no resources are
assigned.

all_sim_started(H, pt_filter=None, low_bound=None)
Returns True if all expected points have started their sim.

Excludes cancelled points.

Parameters

• pt_filter – (Optional) Boolean array filtering expected returned points in H.

• low_bound – (Optional) Lower bound for testing all returned.

Returns
True if all expected points have started their sim.

all_sim_ended(H, pt_filter=None, low_bound=None)
Returns True if all expected points have had their sim_end.

Excludes cancelled points that were not already sim_started.

Parameters

• pt_filter – (Optional) Boolean array filtering expected returned points in H.

• low_bound – (Optional) Lower bound for testing all returned.

Returns
True if all expected points have had their sim_end.

all_gen_informed(H, pt_filter=None, low_bound=None)
Returns True if gen has been informed of all expected points.

Excludes cancelled points that were not already given out.

Parameters

• pt_filter – (Optional) Boolean array filtering expected sim_end points in H.

• low_bound – (Optional) Lower bound for testing all returned.

Returns
True if gen have been informed of all expected points.

points_by_priority(H, points_avail, batch=False)
Returns indices of points to give by priority.

Parameters

• points_avail – Indices of points that are available to give.

• batch – (Optional) Boolean. Should batches of points with the same priority be given
simultaneously.

Returns
An array of point indices to give.

2.6. Writing User Functions 65

libEnsemble User Manual, Release 1.3.0+dev

skip_canceled_points(H, persis_info)
Increments the “next_to_give” field in persis_info to skip any cancelled points

The Work dictionary is returned to the manager alongside persis_info. If 1 is returned as the third value, this
instructs the ensemble to stop.

Note: An error occurs when the alloc_f returns nothing while all workers are idle

Information from the manager describing the progress of the current libEnsemble routine can be found in libE_info:

libE_info = {"exit_criteria": dict, # Criteria for ending routine
"elapsed_time": float, # Time elapsed since start of routine
"manager_kill_canceled_sims": bool, # True if manager is to send kills to␣

→˓cancelled simulations
"sim_started_count": int, # Total number of points given for␣

→˓simulation function evaluation
"sim_ended_count": int, # Total number of points returned␣

→˓from simulation function evaluations
"gen_informed_count": int, # Total number of evaluated points␣

→˓given back to a generator function
"sim_max_given": bool, # True if `sim_max` simulations have␣

→˓been given out to workers
"use_resource_sets": bool} # True if num_resource_sets has been␣

→˓explicitly set.

Most often, the allocation function will just return once sim_max_given is True, but the user could choose to do
something different, such as cancel points or keep returning completed points to the generator.

Generators that construct models based on all evaluated points, for example, may need simulation work units at the
end of an ensemble to be returned to the generator anyway.

Alternatively, users can use elapsed_time to track runtime inside their allocation function and detect impending
timeouts, then pack up cleanup work requests, or mark points for cancellation.

The remaining values above are useful for efficient filtering of H values (e.g., sim_ended_count saves filtering by an
entire column of H.)

Descriptions of included allocation functions can be found here. The default allocation function is
give_sim_work_first. During its worker ID loop, it checks if there’s unallocated work and assigns simulations
for that work. Otherwise, it initializes generators for up to "num_active_gens" instances. Other settings like
batch_mode are also supported. See here for more information about give_sim_work_first.

2.6.4 User Function API

libEnsemble requires functions for generation, simulation, and allocation.

While libEnsemble provides a default allocation function, the simulator and generator functions must be specified.
The required API and example arguments are given here. Example sim and gen functions are provided in the
libEnsemble package.

See here for more in-depth guides to writing user functions

As of v0.10.0, valid simulator and generator functions can accept and return a smaller subset of the listed parameters
and return values. For instance, a def my_simulation(one_Input) -> one_Output function is now accepted, as
is def my_generator(Input, persis_info) -> Output, persis_info.

66 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

sim_f API

The simulator function will be called by libEnsemble’s workers with up to the following arguments and returns:

Out, persis_info, calc_status = sim_f(H[sim_specs["in"]][sim_ids_from_allocf], persis_
→˓info, sim_specs, libE_info)

Parameters:

H: numpy structured array (example)

persis_info: dict (example)

sim_specs: dict (example)

libE_info: dict (example)

Returns:

H: numpy structured array with keys/value-sizes matching those in sim_specs[“out”] (example)

persis_info: dict (example)

calc_status: int, optional Provides a task status to the manager and the libE_stats.txt file (example)

gen_f API

The generator function will be called by libEnsemble’s workers with up to the following arguments and returns:

Out, persis_info, calc_status = gen_f(H[gen_specs["in"]][sim_ids_from_allocf], persis_
→˓info, gen_specs, libE_info)

Parameters:

H: numpy structured array (example)

persis_info: dict (example)

gen_specs: dict (example)

libE_info: dict (example)

Returns:

H: numpy structured array with keys/value-sizes matching those in gen_specs[“out”] (example)

persis_info: dict (example)

calc_status: int, optional Provides a task status to the manager and the libE_stats.txt file (example)

2.6. Writing User Functions 67

libEnsemble User Manual, Release 1.3.0+dev

alloc_f API

The allocation function will be called by libEnsemble’s manager with the following API:

Work, persis_info, stop_flag = alloc_f(W, H, sim_specs, gen_specs, alloc_specs, persis_
→˓info, libE_info)

Parameters:

W: numpy structured array (example)

H: numpy structured array (example)

sim_specs: dict (example)

gen_specs: dict (example)

alloc_specs: dict (example)

persis_info: dict (example)

libE_info: dict Various statistics useful to the allocation function for determining how much work has
been evaluated, or if the routine should prepare to complete. See the allocation function guide for
more information.

Returns:

Work: dict Dictionary with integer keys i for work to be sent to worker i. (example)

persis_info: dict (example)

stop_flag: int, optional Set to 1 to request libEnsemble manager to stop giving additional work after
receiving existing work

2.6.5 calc_status

Worker 1: Calc 0: gen Time: 0.00 Start: 2019-11-19 18:53:43 End: 2019-11-19␣
→˓18:53:43 Status: Not set
Worker 1: Calc 1: sim Time: 4.41 Start: 2019-11-19 18:53:43 End: 2019-11-19␣
→˓18:53:48 Status: Worker killed
Worker 2: Calc 0: sim Time: 5.42 Start: 2019-11-19 18:53:43 End: 2019-11-19␣
→˓18:53:49 Status: Completed
Worker 1: Calc 2: sim Time: 2.41 Start: 2019-11-19 18:53:48 End: 2019-11-19␣
→˓18:53:50 Status: Worker killed
Worker 2: Calc 1: sim Time: 2.41 Start: 2019-11-19 18:53:49 End: 2019-11-19␣
→˓18:53:51 Status: Worker killed
Worker 1: Calc 3: sim Time: 4.41 Start: 2019-11-19 18:53:50 End: 2019-11-19␣
→˓18:53:55 Status: Completed
Worker 2: Calc 2: sim Time: 4.41 Start: 2019-11-19 18:53:51 End: 2019-11-19␣
→˓18:53:56 Status: Completed

calc_status is similar to an exit code, and is either an integer attribute with a corresponding description, or a user-
specified string. They are the third optional return value from a user function, and are printed to libE_stats.txt.

68 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Built-in codes are available in the libensemble.message_numbers module, but users are also free to return any
custom string.

calc_status with Executor

1 from libensemble.message_numbers import WORKER_DONE, WORKER_KILL, TASK_FAILED
2

3 task = exctr.submit(calc_type="sim", num_procs=cores, wait_on_start=True)
4 calc_status = UNSET_TAG
5 poll_interval = 1 # secs
6 while not task.finished:
7 if task.runtime > time_limit:
8 task.kill() # Timeout
9 else:

10 time.sleep(poll_interval)
11 task.poll()
12

13 if task.finished:
14 if task.state == "FINISHED":
15 print("Task {} completed".format(task.name))
16 calc_status = WORKER_DONE
17 elif task.state == "FAILED":
18 print("Warning: Task {} failed: Error code {}".format(task.name, task.errcode))
19 calc_status = TASK_FAILED
20 elif task.state == "USER_KILLED":
21 print("Warning: Task {} has been killed".format(task.name))
22 calc_status = WORKER_KILL
23 else:
24 print("Warning: Task {} in unknown state {}. Error code {}".format(task.name,␣

→˓task.state, task.errcode))
25

26 outspecs = sim_specs["out"]
27 output = np.zeros(1, dtype=outspecs)
28 output["energy"][0] = final_energy
29

30 return output, persis_info, calc_status

Custom calc_status

1 from libensemble.message_numbers import WORKER_DONE, TASK_FAILED
2

3 task = exctr.submit(calc_type="sim", num_procs=cores, wait_on_start=True)
4

5 task.wait(timeout=60)
6

7 file_output = read_task_output(task)
8 if task.errcode == 0:
9 if "fail" in file_output:

10 calc_status = "Task failed successfully?"
11 else:
12 calc_status = WORKER_DONE

(continues on next page)

2.6. Writing User Functions 69

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

13 else:
14 calc_status = TASK_FAILED
15

16 outspecs = sim_specs["out"]
17 output = np.zeros(1, dtype=outspecs)
18 output["energy"][0] = final_energy
19

20 return output, persis_info, calc_status

Available values

FINISHED_PERSISTENT_SIM_TAG = 11 # tells manager sim_f done persistent mode
FINISHED_PERSISTENT_GEN_TAG = 12 # tells manager gen_f done persistent mode
MAN_SIGNAL_FINISH = 20 # Kill tasks and shutdown worker
MAN_SIGNAL_KILL = 21 # Kill running task - but don't stop worker
WORKER_KILL = 30 # Worker kills not covered by a more specific case
WORKER_KILL_ON_ERR = 31 # Worker killed due to an error in results
WORKER_KILL_ON_TIMEOUT = 32 # Worker killed on timeout
TASK_FAILED = 33 # Calc had tasks that failed
TASK_FAILED_TO_START = 34 # Calc had tasks that failed to start
WORKER_DONE = 35 # Calculation was successful

Corresponding messages

calc_status_strings = {
UNSET_TAG: "Not set",
FINISHED_PERSISTENT_SIM_TAG: "Persis sim finished",
FINISHED_PERSISTENT_GEN_TAG: "Persis gen finished",
MAN_SIGNAL_FINISH: "Manager killed on finish",
MAN_SIGNAL_KILL: "Manager killed task",
WORKER_KILL_ON_ERR: "Worker killed task on Error",
WORKER_KILL_ON_TIMEOUT: "Worker killed task on Timeout",
WORKER_KILL: "Worker killed",
TASK_FAILED: "Task Failed during run",
TASK_FAILED_TO_START: "Task Failed to start",
WORKER_DONE: "Completed",
CALC_EXCEPTION: "Exception occurred",
None: "Unknown Status",

}

70 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

2.6.6 Work Dictionary

The work dictionary contains metadata that is used by the manager to send a packet of work to a worker. The dictionary
uses integer keys i and values that determine the data given to worker i. Populated in the allocation function. Work[i]
has the following form:

Work[i]: [dict]:

Required keys:
"H_fields" [list]: The field names of the history H to be sent to worker i
"persis_info" [dict]: Any persistent info to be sent to worker i
"tag" [int]: "EVAL_SIM_TAG"/"EVAL_GEN_TAG" if worker i is to call sim/gen_func
"libE_info" [dict]: Info sent to/from worker to help manager update the H array

libE_info contains the following:
"H_rows" [list of ints]: History rows to send to worker i
"rset_team" [list of ints]: The resource sets to be assigned (if dynamic scheduling␣

→˓is used)
"persistent" [bool]: True if worker i will enter persistent mode (Default: False)

The work dictionary is typically set using the gen_work or sim_work helper functions in the allocation func-
tion. H_fields, for example, is usually packed from either sim_specs["in"], gen_specs["in"] or the equivalent
“persis_in” variants.

See also:

For allocation functions giving work dictionaries using persistent workers, see start_only_persistent.py or
start_persistent_local_opt_gens.py. For a use case where the allocation and generator functions combine to do simula-
tion evaluations with different resources, see test_uniform_sampling_with_variable_resources.py.

2.6.7 Worker Array

The worker array W contains information about each worker’s state. Used within allocation functions to determine
which workers are eligible to receive work.

W: numpy structured array
"worker_id" [int]:

The worker ID
"active" [int]:

Is the worker active or not
"persis_state" [int]:

Is the worker in a persis_state
"active_recv" [int]:

Is the worker in an active receive state
"blocked" [int]:

Is the worker's resources blocked by another calculation

We use the following convention:

2.6. Writing User Functions 71

https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/start_only_persistent.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/start_persistent_local_opt_gens.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_with_variable_resources.py

libEnsemble User Manual, Release 1.3.0+dev

Worker state active persis_state blocked
idle worker 0 0 0
active, nonpersistent sim 1 0 0
active, nonpersistent gen 2 0 0
active, persistent sim 1 1 0
active, persistent gen 2 2 0
waiting, persistent sim 0 1 0
waiting, persistent gen 0 2 0
worker blocked by some other calculation 1 0 1

Note:
• libEnsemble’s manager receives only from workers with a nonzero "active" state
• libEnsemble’s manager calls the alloc_f only if some worker has an "active" state of zero, or is in an active

receive state.

See also:

For an example allocation function that queries the worker array, see persistent_aposmm_alloc.

2.7 Executors

libEnsemble’s Executors can be used within user functions to provide a simple, portable interface for running and
managing user applications.

2.7.1 Executor Overview

Most computationally expensive libEnsemble workflows involve launching applications from a sim_f or gen_f run-
ning on a worker to the compute nodes of a supercomputer, cluster, or other compute resource.

The Executor provides a portable interface for running applications on any system.

Detailed description

An Executor interface is provided by libEnsemble to remove the burden of system interaction from the user and improve
workflow portability. Users first register their applications to Executor instances, which then return corresponding Task
objects upon submission within user functions.

Task attributes and retrieval functions can be queried to determine the status of running application instances. Functions
are also provided to access and interrogate files in the task’s working directory.

libEnsemble’s Executors and Tasks contain many familiar features and methods to Python’s native concurrent futures
interface. Executors feature the submit() function for launching apps (detailed below), but currently do not support
map() or shutdown(). Tasks are much like futures. They feature the cancel(), cancelled(), running(),
done(), result(), and exception() functions from the standard.

The main Executor class can subprocess serial applications in place, while the MPIExecutor is used for running MPI
applications, and the BalsamExecutor for submitting MPI run requests from a worker running on a compute node to
the Balsam service. This second approach is suitable for systems that don’t allow submitting MPI applications from
compute nodes.

72 Chapter 2. Constructing Workflows

https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/persistent_aposmm_alloc.py
https://docs.python.org/library/concurrent.futures.html

libEnsemble User Manual, Release 1.3.0+dev

Typically, users choose and parameterize their Executor objects in their calling scripts, where each executable genera-
tor or simulation application is registered to it. If an alternative Executor like Balsam is used, then the applications can
be registered as in the example below. Once in the user-side worker code (sim/gen func), the Executor can be retrieved
without any need to specify the type.

Once the Executor is retrieved, tasks can be submitted by specifying the app_name from registration in the calling
script alongside other optional parameters described in the API.

Basic usage

In calling script

To set up an MPI executor, register an MPI application, and add to the ensemble object.

from libensemble import Ensemble
from libensemble.executors import MPIExecutor

exctr = MPIExecutor()
exctr.register_app(full_path="/path/to/my/exe", app_name="sim1")
ensemble = Ensemble(executor=exctr)

If using the libE() call, the Executor in the calling script does not have to be passed to the libE() function. It is
transferred via the Executor.executor class variable.

In user simulation function:

def sim_func(H, persis_info, sim_specs, libE_info):

input_param = str(int(H["x"][0][0]))
exctr = libE_info["executor"]

task = exctr.submit(
app_name="sim1",
num_procs=8,
app_args=input_param,
stdout="out.txt",
stderr="err.txt",

)

Wait for task to complete
task.wait()

Example use-cases:

• Electrostatic Forces example: Launches the forces.x MPI application.

• Forces example with GPUs: Auto-assigns GPUs via executor.

See the Executor or MPIExecutor interface for the complete API.

See Running on HPC Systems for illustrations of how common options such as libE_specs["dedicated_mode"]
affect the run configuration on clusters and supercomputers.

2.7. Executors 73

libEnsemble User Manual, Release 1.3.0+dev

Advanced Features

Example of polling output and killing application:

In simulation function (sim_f).

import time

def sim_func(H, persis_info, sim_specs, libE_info):
input_param = str(int(H["x"][0][0]))
exctr = libE_info["executor"]

task = exctr.submit(
app_name="sim1",
num_procs=8,
app_args=input_param,
stdout="out.txt",
stderr="err.txt",

)

timeout_sec = 600
poll_delay_sec = 1

while not task.finished:
Has manager sent a finish signal
if exctr.manager_kill_received():

task.kill()
my_cleanup()

Check output file for error and kill task
elif task.stdout_exists():

if "Error" in task.read_stdout():
task.kill()

elif task.runtime > timeout_sec:
task.kill() # Timeout

else:
time.sleep(poll_delay_sec)
task.poll()

print(task.state) # state may be finished/failed/killed

Users who wish to poll only for manager kill signals and timeouts don’t necessarily need to construct a polling loop like
above, but can instead use the Executor built-in polling_loop() method. An alternative to the above simulation
function may resemble:

def sim_func(H, persis_info, sim_specs, libE_info):
input_param = str(int(H["x"][0][0]))
exctr = libE_info["executor"]

task = exctr.submit(
app_name="sim1",

(continues on next page)

74 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

num_procs=8,
app_args=input_param,
stdout="out.txt",
stderr="err.txt",

)

timeout_sec = 600
poll_delay_sec = 1

exctr.polling_loop(task, timeout=timeout_sec, delay=poll_delay_sec)

print(task.state) # state may be finished/failed/killed

Note: Applications or tasks submitted via the Balsam Executor are referred to as “jobs” within Balsam, including
within Balsam’s database and when describing the state of a completed submission.

The MPIExecutor autodetects system criteria such as the appropriate MPI launcher and mechanisms to poll and kill
tasks. It also has access to the resource manager, which partitions resources among workers, ensuring that runs utilize
different resources (e.g., nodes). Furthermore, the MPIExecutor offers resilience via the feature of re-launching tasks
that fail to start because of system factors.

Various back-end mechanisms may be used by the Executor to best interact with each system, including proxy launchers
or task management systems such as Balsam. Currently, these Executors launch at the application level within an
existing resource pool. However, submissions to a batch scheduler may be supported in future Executors.

2.7.2 Base Executor - Local apps

This module contains the classes Executor and Task. An executor can create and manage multiple tasks. Task
attributes are queried to determine status.

See the Executor APIs for optional arguments.

Base Executor

Only for running local serial-launched applications. To run MPI applications and use detected resources, use the
MPIExecutor

class libensemble.executors.executor.Executor

The executor can create, poll and kill runnable tasks

Class Attributes:

Variables
Executor – executor: The executor object is stored here and can be retrieved in user functions.

__init__()

Instantiate a new Executor instance.

Returns
A new Executor object is created. This is typically created in the user calling script.

Return type
Executor

2.7. Executors 75

https://balsam.readthedocs.io/en/latest/

libEnsemble User Manual, Release 1.3.0+dev

register_app(full_path, app_name=None, calc_type=None, desc=None, precedent='')
Registers a user application to libEnsemble.

The full_path of the application must be supplied. Either app_name or calc_type can be used to
identify the application in user scripts (in the submit function). app_name is recommended.

Parameters

• full_path (str) – The full path of the user application to be registered

• app_name (str, Optional) – Name to identify this application.

• calc_type (str, Optional) – Calculation type: Set this application as the default ‘sim’
or ‘gen’ function.

• desc (str, Optional) – Description of this application

• precedent (str, Optional) – Any str that should directly precede the application full
path.

Return type
None

manager_poll()

Polls for a manager signal

The executor manager_signal attribute will be updated.

Return type
int

manager_kill_received()

Return True if received kill signal from the manager

Return type
bool

polling_loop(task, timeout=None, delay=0.1, poll_manager=False)
Optional, blocking, generic task status polling loop. Operates until the task finishes, times out, or is op-
tionally killed via a manager signal. On completion, returns a presumptive calc_status integer. Useful
for running an application via the Executor until it stops without monitoring its intermediate output.

Parameters

• task (object) – a Task object returned by the executor on submission

• timeout (int, Optional) – Maximum number of seconds for the polling loop to run.
Tasks that run longer than this limit are killed. Default: No timeout

• delay (int, Optional) – Sleep duration between polling loop iterations. Default: 0.1
seconds

• poll_manager (bool, Optional) – Whether to also poll the manager for ‘finish’ or ‘kill’
signals. If detected, the task is killed. Default: False.

Returns
calc_status – presumptive integer attribute describing the final status of a launched task

Return type
int

76 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

submit(calc_type=None, app_name=None, app_args=None, stdout=None, stderr=None, dry_run=False,
wait_on_start=False, env_script=None)

Create a new task and run as a local serial subprocess.

The created task object is returned.

Parameters

• calc_type (str, Optional) – The calculation type: ‘sim’ or ‘gen’ Only used if
app_name is not supplied. Uses default sim or gen application.

• app_name (str, Optional) – The application name. Must be supplied if calc_type is
not.

• app_args (str, Optional) – A str of the application arguments to be added to task
submit command line

• stdout (str, Optional) – A standard output filename

• stderr (str, Optional) – A standard error filename

• dry_run (bool, Optional) – Whether this is a dry_run - no task will be launched; in-
stead runline is printed to logger (at INFO level)

• wait_on_start (bool or int, Optional) – Whether to wait for task to be polled as
RUNNING (or other active/end state) before continuing. If an integer N is supplied, wait
at most N seconds.

• env_script (str, Optional) – The full path of a shell script to set up the environ-
ment for the launched task. This will be run in the subprocess, and not affect the worker
environment. The script should start with a shebang.

Returns
task – The launched task object

Return type
Task

Task

Tasks are created and returned by the Executor’s submit(). Tasks can be polled, killed, and waited on with the
respective poll, kill, and wait functions. Task information can be queried through instance attributes and query
functions.

class libensemble.executors.executor.Task(app=None, app_args=None, workdir=None, stdout=None,
stderr=None, workerid=None, dry_run=False)

Manages the creation, configuration and status of a launchable task

workdir_exists()

Returns true if the task’s workdir exists

Return type
bool | None

file_exists_in_workdir(filename)
Returns true if the named file exists in the task’s workdir

Parameters
filename (str)

2.7. Executors 77

libEnsemble User Manual, Release 1.3.0+dev

Return type
bool

read_file_in_workdir(filename)
Opens and reads the named file in the task’s workdir

Parameters
filename (str)

Return type
str

stdout_exists()

Returns true if the task’s stdout file exists in the workdir

Return type
bool

read_stdout()

Opens and reads the task’s stdout file in the task’s workdir

Return type
str

stderr_exists()

Returns true if the task’s stderr file exists in the workdir

Return type
bool

read_stderr()

Opens and reads the task’s stderr file in the task’s workdir

Return type
str

poll()

Polls and updates the status attributes of the task

Return type
None

wait(timeout=None)
Waits on completion of the task or raises TimeoutExpired exception

Status attributes of task are updated on completion.

Parameters
timeout (int or float, Optional) – Time in seconds after which a TimeoutExpired
exception is raised. If not set, then simply waits until completion. Note that the task is not
automatically killed on timeout.

Return type
None

result(timeout=None)
Wrapper for task.wait() that also returns the task’s status on completion.

Parameters
timeout (int or float, Optional) – Time in seconds after which a TimeoutExpired
exception is raised. If not set, then simply waits until completion. Note that the task is not
automatically killed on timeout.

78 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Return type
str

exception(timeout=None)
Wrapper for task.wait() that instead returns the task’s error code on completion.

Parameters
timeout (int or float, Optional) – Time in seconds after which a TimeoutExpired
exception is raised. If not set, then simply waits until completion. Note that the task is not
automatically killed on timeout.

running()

Return True if task is currently running.

Return type
bool

done()

Return True if task is finished.

Return type
bool

kill(wait_time=60)
Kills or cancels the supplied task

Parameters
wait_time (int, Optional) – Time in seconds to wait for termination between sending
SIGTERM and a SIGKILL signals.

Return type
None

Sends SIGTERM, waits for a period of <wait_time> for graceful termination, then sends a hard kill with
SIGKILL. If <wait_time> is 0, we go immediately to SIGKILL; if <wait_time> is none, we never do a
SIGKILL.

cancel()

Wrapper for task.kill() without waiting

Return type
None

cancelled()

Return `True if task successfully cancelled.

Return type
bool

Task Attributes

Note: These should not be set directly. Tasks are launched by the Executor, and task information can be queried through
the task attributes below and the query functions.

task.state
(string) The task status. One of (“UNKNOWN”|”CREATED”|”WAITING”|”RUNNING”|”FINISHED”|”USER_KILLED”|”FAILED”|”FAILED_TO_START”)

2.7. Executors 79

libEnsemble User Manual, Release 1.3.0+dev

task.process
(process obj) The process object used by the underlying process manager (e.g., return value of sub-
process.Popen).

task.errcode
(int) The error code (or return code) used by the underlying process manager.

task.finished
(boolean) True means task has finished running - not whether it was successful.

task.success
(boolean) Did task complete successfully (e.g., the return code is zero)?

task.runtime
(int) Time in seconds that task has been running.

task.submit_time
(int) Time since epoch that task was submitted.

task.total_time
(int) Total time from task submission to completion (only available when task is finished).

Run configuration attributes - some will be autogenerated:

task.workdir
(string) Work directory for the task

task.name
(string) Name of task - autogenerated

task.app
(app obj) Use application/executable, registered using exctr.register_app

task.app_args
(string) Application arguments as a string

task.stdout
(string) Name of file where the standard output of the task is written (in task.workdir)

task.stderr
(string) Name of file where the standard error of the task is written (in task.workdir)

task.dry_run
(boolean) True if task corresponds to dry run (no actual submission)

task.runline
(string) Complete, parameterized command to be subprocessed to launch app

2.7.3 MPI Executor - MPI apps

This module launches and controls the running of MPI applications.

In order to create an MPI executor, the calling script should contain:

exctr = MPIExecutor()

The MPIExecutor will use system resource information supplied by the libEnsemble resource manager when submitting
tasks.

See this example for usage.

80 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

class libensemble.executors.mpi_executor.MPIExecutor(custom_info={})
Bases: Executor

The MPI executor can create, poll and kill runnable MPI tasks

Parameters
custom_info (dict, Optional) – Provide custom overrides to selected variables that are usu-
ally auto-detected. See below.

custom_info usage

The MPIExecutor automatically detects MPI runners and launch mechanisms. However it is possible to override
the detected information using the custom_info argument. This takes a dictionary of values.

The allowable fields are:

'mpi_runner' [string]:
Select runner: 'mpich', 'openmpi', 'aprun', 'srun', 'jsrun', 'custom'
All except 'custom' relate to runner classes in libEnsemble.
Custom allows user to define their own run-lines but without parsing
arguments or making use of auto-resources.

'runner_name' [string]:
Runner name: Replaces run command if present. All runners have a default
except for 'custom'.

'subgroup_launch' [bool]:
Whether MPI runs should be initiated in a new process group. This needs
to be correct for kills to work correctly. Use the standalone test at
libensemble/tests/standalone_tests/kill_test to determine correct value
for a system.

For example:

customizer = {'mpi_runner': 'mpich',
'runner_name': 'wrapper -x mpich'}

from libensemble.executors.mpi_executor import MPIExecutor
exctr = MPIExecutor(custom_info=customizer)

submit(calc_type=None, app_name=None, num_procs=None, num_nodes=None, procs_per_node=None,
num_gpus=None, machinefile=None, app_args=None, stdout=None, stderr=None,
stage_inout=None, hyperthreads=False, dry_run=False, wait_on_start=False, extra_args=None,
auto_assign_gpus=False, match_procs_to_gpus=False, env_script=None, mpi_runner_type=None)

Creates a new task, and either executes or schedules execution.

The created task object is returned.

The user must supply either the app_name or calc_type arguments (app_name is recommended). All other
arguments are optional.

Parameters

• calc_type (str, Optional) – The calculation type: ‘sim’ or ‘gen’ Only used if
app_name is not supplied. Uses default sim or gen application.

• app_name (str, Optional) – The application name. Must be supplied if calc_type is
not.

• num_procs (int, Optional) – The total number of processes (MPI ranks)

2.7. Executors 81

libEnsemble User Manual, Release 1.3.0+dev

• num_nodes (int, Optional) – The number of nodes

• procs_per_node (int, Optional) – The processes per node

• num_gpus (int, Optional) – The total number of GPUs

• machinefile (str, Optional) – Name of a machinefile

• app_args (str, Optional) – A string of the application arguments to be added to task
submit command line

• stdout (str, Optional) – A standard output filename

• stderr (str, Optional) – A standard error filename

• stage_inout (str, Optional) – A directory to copy files from; default will take from
current directory

• hyperthreads (bool, Optional) – Whether to submit MPI tasks to hyperthreads

• dry_run (bool, Optional) – Whether this is a dry_run - no task will be launched; in-
stead runline is printed to logger (at INFO level)

• wait_on_start (bool or int, Optional) – Whether to wait for task to be polled as
RUNNING (or other active/end state) before continuing. If an integer N is supplied, wait
at most N seconds.

• extra_args (str, Optional) – Additional command line arguments to supply to
MPI runner. If arguments are recognized as MPI resource configuration (num_procs,
num_nodes, procs_per_node) they will be used in resources determination unless also sup-
plied in the direct options.

• auto_assign_gpus (bool, Optional) – Auto-assign GPUs available to this worker us-
ing either the method supplied in configuration or determined by detected environment.
Default: False

• match_procs_to_gpus (bool, Optional) – For use with auto_assign_gpus. Auto-
assigns MPI processors to match the assigned GPUs. Default: False unless
auto_assign_gpus is True and no other CPU configuration is supplied.

• env_script (str, Optional) – The full path of a shell script to set up the environ-
ment for the launched task. This will be run in the subprocess, and not affect the worker
environment. The script should start with a shebang.

• mpi_runner_type ((str|dict), Optional) – An MPI runner to be used for this sub-
mit only. Supply either a string for the MPI runner type or a dictionary for detailed configu-
ration (see custom_info on MPIExecutor constructor). This will not change the default MPI
runner for the executor. Example string inputs are “mpich”, “openmpi”, “srun”, “jsrun”,
“aprun”.

Returns
task – The launched task object

Return type
Task

Note that if some combination of num_procs, num_nodes, and procs_per_node is provided, these will be
honored if possible. If resource detection is on and these are omitted, then the available resources will be
divided among workers.

manager_kill_received()

Return True if received kill signal from the manager

82 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Return type
bool

manager_poll()

Polls for a manager signal

The executor manager_signal attribute will be updated.

Return type
int

polling_loop(task, timeout=None, delay=0.1, poll_manager=False)
Optional, blocking, generic task status polling loop. Operates until the task finishes, times out, or is op-
tionally killed via a manager signal. On completion, returns a presumptive calc_status integer. Useful
for running an application via the Executor until it stops without monitoring its intermediate output.

Parameters

• task (object) – a Task object returned by the executor on submission

• timeout (int, Optional) – Maximum number of seconds for the polling loop to run.
Tasks that run longer than this limit are killed. Default: No timeout

• delay (int, Optional) – Sleep duration between polling loop iterations. Default: 0.1
seconds

• poll_manager (bool, Optional) – Whether to also poll the manager for ‘finish’ or ‘kill’
signals. If detected, the task is killed. Default: False.

Returns
calc_status – presumptive integer attribute describing the final status of a launched task

Return type
int

register_app(full_path, app_name=None, calc_type=None, desc=None, precedent='')
Registers a user application to libEnsemble.

The full_path of the application must be supplied. Either app_name or calc_type can be used to
identify the application in user scripts (in the submit function). app_name is recommended.

Parameters

• full_path (str) – The full path of the user application to be registered

• app_name (str, Optional) – Name to identify this application.

• calc_type (str, Optional) – Calculation type: Set this application as the default ‘sim’
or ‘gen’ function.

• desc (str, Optional) – Description of this application

• precedent (str, Optional) – Any str that should directly precede the application full
path.

Return type
None

2.7. Executors 83

libEnsemble User Manual, Release 1.3.0+dev

Class-specific Attributes

Class-specific attributes can be set directly to alter the behavior of the MPI Executor. However, they should be used
with caution, because they may not be implemented in other executors.

max_submit_attempts
(int) Maximum number of launch attempts for a given task. Default: 5.

fail_time
(int or float) Only if wait_on_start is set. Maximum run time to failure in seconds that results in
relaunch. Default: 2.

retry_delay_incr
(int or float) Delay increment between launch attempts in seconds. Default: 5. (i.e., First retry after
5 seconds, then 10 seconds, then 15, etc. . .)

Example. To increase resilience against submission failures:

taskctrl = MPIExecutor()
taskctrl.max_launch_attempts = 8
taskctrl.fail_time = 5
taskctrl.retry_delay_incr = 10

2.7.4 Balsam Executor - Remote apps

This module launches and controls tasks via Balsam, and can submit tasks from any machine, to any machine running
a Balsam site.

At this time, access to Balsam is limited to those with valid organizational logins authenticated through Globus.

84 Chapter 2. Constructing Workflows

https://balsam.readthedocs.io/en/latest/
https://balsam.readthedocs.io/en/latest/user-guide/site-config/
https://www.globus.org/

libEnsemble User Manual, Release 1.3.0+dev

Initialization

To initialize a Balsam executor:

from libensemble.executors.balsam_executors import BalsamExecutor
exctr = BalsamExecutor()

App and Resource registration

Note that Balsam ApplicationDefinition instances are registered instead of paths and task submissions will not
run until Balsam reserves compute resources at a site:

from libensemble.executors.balsam_executors import BalsamExecutor
from balsam.api import ApplicationDefinition

class HelloApp(ApplicationDefinition):
site = "my-balsam-site"
command_template = "/path/to/hello.app {{ my_name }}"

exctr = BalsamExecutor()
exctr.register_app(HelloApp, app_name="hello")

exctr.submit_allocation(
site_id=999, # corresponds to "my-balsam-site", found via ``balsam site ls``
num_nodes=4, # Total number of nodes requested for *all jobs*
wall_time_min=30,
queue="debug-queue",
project="my-project",

)

Task Submission

Task submissions of registered apps aren’t too different from the other executors, except Balsam expects ap-
plication arguments in dictionary form. Note that these fields must match the templating syntax in each
ApplicationDefinition’s command_template field:

args = {"my_name": "World"}

task = exctr.submit(
app_name="hello",
app_args=args,
num_procs=4,
num_nodes=1,
procs_per_node=4,

)

Application instances submitted by the executor to the Balsam service will get scheduled within the reserved resource
allocation. Each Balsam app can only be submitted to the site specified in its class definition. Output files will
appear in the Balsam site’s data directory, but can be automatically transferred back via Globus.

Reading Balsam’s documentation is highly recommended.

2.7. Executors 85

https://balsam.readthedocs.io/en/latest/user-guide/transfer/

libEnsemble User Manual, Release 1.3.0+dev

class libensemble.executors.balsam_executor.BalsamExecutor

Bases: Executor

Wraps the Balsam service. Via this Executor, Balsam Jobs can be submitted to Balsam sites, either local or on
remote machines.

Note: Task kills are not configurable in the Balsam executor.

__init__()

Instantiate a new BalsamExecutor instance.

Return type
None

register_app(BalsamApp, app_name=None, calc_type=None, desc=None, precedent=None)
Registers a Balsam ApplicationDefinition to libEnsemble. This class instance must have a site and
command_template specified. See the Balsam docs for information on other optional fields.

Parameters

• BalsamApp (ApplicationDefinition object) – A Balsam ApplicationDefinition
instance.

• app_name (str, Optional) – Name to identify this application.

• calc_type (str, Optional) – Calculation type: Set this application as the default
'sim' or 'gen' function.

• desc (str, Optional) – Description of this application

• precedent (str | None)

Return type
None

submit_allocation(site_id, num_nodes, wall_time_min, job_mode='mpi', queue='local', project='local',
optional_params={}, filter_tags={}, partitions=[])

Submits a Balsam BatchJob machine allocation request to Balsam. Corresponding Balsam applications
with a matching site can be submitted to this allocation. Effectively a wrapper for BatchJob.objects.
create().

Parameters

• site_id (int) – The corresponding site_id for a Balsam site. Retrieve via balsam
site ls

• num_nodes (int) – The number of nodes to request from a machine with a running Balsam
site

• wall_time_min (int) – The number of walltime minutes to request for the BatchJob
allocation

• job_mode (str, Optional) – Either "serial" or "mpi". Default: "mpi"

• queue (str, Optional) – Specifies the queue from which the BatchJob should request
nodes. Default: "local"

• project (str, Optional) – Specifies the project that should be charged for the requested
machine time. Default: "local"

86 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

• optional_params (dict, Optional) – Additional system-specific parameters to set,
based on fields in Balsam’s job-template.sh

• filter_tags (dict, Optional) – Directs the resultant BatchJob to only run Jobs with
matching tags.

• partitions (List[dict], Optional) – Divides the allocation into multiple launcher
partitions, with differing job_mode, num_nodes. filter_tags, etc. See the Balsam
docs.

Return type
The corresponding BatchJob object.

revoke_allocation(allocation, timeout=60)
Terminates a Balsam BatchJob machine allocation remotely. Balsam apps should no longer be submitted
to this allocation. Best to run after libEnsemble completes, or after this BatchJob is no longer needed.
Helps save machine time.

Parameters

• allocation (BatchJob object) – a BatchJob with a corresponding machine allocation
that should be cancelled.

• timeout (int, Optional) – Timeout and warn user after this many seconds of attempt-
ing to revoke an allocation.

Return type
bool

submit(calc_type=None, app_name=None, app_args=None, num_procs=None, num_nodes=None,
procs_per_node=None, max_tasks_per_node=None, machinefile=None, gpus_per_rank=0,
transfers={}, workdir='', dry_run=False, wait_on_start=False, extra_args={}, tags={})

Initializes and submits a Balsam Job based on a registered ApplicationDefinition and requested re-
sources. A corresponding libEnsemble Task object is returned.

Parameters

• calc_type (str, Optional) – The calculation type: 'sim' or 'gen' Only used if
app_name is not supplied. Uses default sim or gen application.

• app_name (str, Optional) – The application name. Must be supplied if calc_type is
not.

• app_args (dict) – A dictionary of options that correspond to fields to template in the
ApplicationDefinition’s command_template field.

• num_procs (int, Optional) – The total number of MPI ranks on which to submit the
task

• num_nodes (int, Optional) – The number of nodes on which to submit the task

• procs_per_node (int, Optional) – The processes per node for this task

• max_tasks_per_node (int) – Instructs Balsam to schedule at most this many Jobs per
node.

• machinefile (str, Optional) – Name of a machinefile for this task to use. Unused by
Balsam

• gpus_per_rank (int, Optional) – Number of GPUs to reserve for each MPI rank

2.7. Executors 87

libEnsemble User Manual, Release 1.3.0+dev

• transfers (dict, Optional) – A Job-specific Balsam transfers dictionary that corre-
sponds with an ApplicationDefinition transfers field. See the Balsam docs for
more information.

• workdir (str) – Specifies as name for the Job’s output directory within the Balsam site’s
data directory. Default: libe_workflow

• dry_run (bool, Optional) – Whether this is a dry run - no task will be launched; instead
runline is printed to logger (at INFO level)

• wait_on_start (bool, Optional) – Whether to block, and wait for task to be polled as
RUNNING (or other active/end state) before continuing

• extra_args (dict, Optional) – Additional arguments to supply to MPI runner.

• tags (dict, Optional) – Additional tags to organize the Job or restrict which
BatchJobs run it.

Returns
task – The launched task object

Return type
BalsamTask

Note that since Balsam Jobs are often sent to entirely different machines than where libEnsemble is run-
ning, how libEnsemble’s resource manager has divided local resources among workers doesn’t impact what
resources can be requested for a Balsam Job running on an entirely different machine.

class libensemble.executors.balsam_executor.BalsamTask(app=None, app_args=None, workdir=None,
stdout=None, stderr=None,
workerid=None)

Bases: Task

Wraps a Balsam Job from the Balsam service.

The same attributes and query routines are implemented. Use task.process to refer to the matching Balsam
Job initialized by the BalsamExecutor, with every Balsam Jobmethod invocable on it. Otherwise, libEnsemble
task methods like poll() can be used directly.

Parameters

• app (Application | None)

• app_args (dict)

• workdir (str | None)

• stdout (str)

• stderr (str)

• workerid (int)

poll()

Polls and updates the status attributes of the supplied task. Requests Job information from Balsam service.

Return type
None

wait(timeout=None)
Waits on completion of the task or raises TimeoutExpired.

Status attributes of task are updated on completion.

88 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Parameters
timeout (int or float, Optional) – Time in seconds after which a TimeoutExpired
exception is raised. If not set, then simply waits until completion. Note that the task is not
automatically killed on timeout.

Return type
None

kill()

Cancels the task. Killing a running task is unsupported by Balsam at this time.

Return type
None

2.8 Convenience Tools and Functions

Setup Helpers

tools.add_unique_random_streams(persis_info, nstreams, seed='')
Creates nstreams random number streams for the libE manager and workers when nstreams is num_workers + 1.
Stream i is initialized with seed i by default. Otherwise the streams can be initialized with a provided seed.

The entries are appended to the provided persis_info dictionary.

persis_info = add_unique_random_streams(old_persis_info, nworkers + 1)

Parameters

• persis_info (dict) – Persistent information dictionary. (example)

• nstreams (int) – Number of independent random number streams to produce.

• seed (int) – (Optional) Seed for identical random number streams for each worker. If ex-
plicitly set to None, random number streams are unique and seed via other pseudorandom
mechanisms.

tools.eprint(*args, **kwargs)
Prints a user message to standard error

class tools.ForkablePdb(completekey='tab', stdin=None, stdout=None, skip=None, nosigint=False,
readrc=True)

A Pdb subclass that may be used from a forked multiprocessing child

Usage:

from libensemble.tools import ForkablePdb

ForkablePdb().set_trace()

tools.parse_args()

Parses command-line arguments. Use in calling script.

from libensemble.tools import parse_args

nworkers, is_manager, libE_specs, misc_args = parse_args()

2.8. Convenience Tools and Functions 89

libEnsemble User Manual, Release 1.3.0+dev

Or for object interface, when creating the ensemble object.

from libensemble import Ensemble

ensemble = Ensemble(parse_args=True)

From the shell:

$ python calling_script --comms local --nworkers 4

Usage:

usage: test_... [-h] [--comms [{local, tcp, ssh, client, mpi}]]
[--nworkers [NWORKERS]] [--workers WORKERS [WORKERS ...]]
[--nsim_workers [NSIM_WORKERS]]
[--nresource_sets [NRESOURCE_SETS]]
[--workerID [WORKERID]] [--server SERVER SERVER SERVER]
[--pwd [PWD]] [--worker_pwd [WORKER_PWD]]
[--worker_python [WORKER_PYTHON]]
[--tester_args [TESTER_ARGS [TESTER_ARGS ...]]]

Note that running via an MPI runner uses the default 'mpi' comms, and '--nworkers'
will be ignored. The number of processes are supplied via the MPI run line. One␣
→˓being
the manager, and the rest are workers.

--comms, Communications medium for manager and workers.
Default is 'local' if --nworkers is provided, otherwise 'mpi'.

--nworkers/-n, (For 'local' or 'tcp' comms) Set number of workers.
--nresource_sets, Explicitly set the number of resource sets. This sets

libE_specs["num_resource_sets"]. By default, resources will be
divided by workers (excluding zero_resource_workers).

--nsim_workers, (For 'local" or 'mpi' comms) A convenience option for cases with
persistent generators - sets the number of simulation workers.
If used with no other criteria, one additional worker for running␣

→˓a
generator will be added, and the number of resource sets will be␣

→˓assigned
the given value. If '--nworkers' has also been specified, will␣

→˓generate
enough additional workers to match the other criteria. If '--

→˓nresource_sets'
is also specified, will not override resource sets.

Example command lines:

Run with 'local' comms and 4 workers (the following are equivalent).
$ python calling_script --comms local --nworkers 4
$ python calling_script --nworkers 4
$ python calling_script -n 4

Run with 'local' comms and 5 workers - one gen worker (no resources), and 4 sim␣
→˓workers.
$ python calling_script --comms local --nsim_workers 4

(continues on next page)

90 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

Run with 'local' comms with 4 workers and 8 resource sets. The extra resource sets␣
→˓will
be used for larger simulations (using variable resource assignment).
$ python calling_script --comms local --nresource_sets 8

Previous example with 'mpi' comms.
$ mpirun -np 5 python calling_script --nresource_sets 8

Returns

• nworkers (int) – Number of workers libEnsemble will initiate

• is_manager (bool) – Indicates whether the current process is the manager process

• libE_specs (dict) – Settings and specifications for libEnsemble (example)

tools.save_libE_output(H, persis_info, calling_file, nworkers,
dest_path='/home/docs/checkouts/readthedocs.org/user_builds/libensemble/checkouts/latest/docs',
mess='Run completed')

Writes out history array and persis_info to files.

Format: <calling_script>_results_History_length=<length>_evals=<Completed evals>_ranks=<nworkers>

save_libE_output(H, persis_info, __file__, nworkers)

Parameters

• H (NumPy structured array) – History array storing rows for each point. (example)

• persis_info (dict) – Persistent information dictionary. (example)

• calling_file (str) – Name of user-calling script (or user chosen name) to prefix output
files. The convention is to send __file__ from user calling script.

• nworkers (int) – The number of workers in this ensemble. Added to output file names.

• mess (str) – A message to print/log when saving the file.

Persistent Helpers

These routines are commonly used within persistent generator functions such as persistent_aposmm in
libensemble/gen_funcs/ for intermediate communication with the manager. Persistent simulator functions are
also supported.

class persistent_support.PersistentSupport(libE_info, calc_type)
A helper class to assist with writing persistent user functions.

Parameters

• libE_info (Dict[str, Dict[Any, Any]])

• calc_type (int)

send(output, calc_status=0, keep_state=False)
Send message from worker to manager.

Parameters

2.8. Convenience Tools and Functions 91

https://docs.scipy.org/doc/numpy/user/basics.rec.html

libEnsemble User Manual, Release 1.3.0+dev

• output (ndarray[Any, dtype[_ScalarType_co]]) – Output array to be sent to man-
ager.

• calc_status (int) – (Optional) Provides a task status.

• keep_state – (Optional) If True the manager will not modify its record of the workers
state (usually the manager changes the worker’s state to inactive, indicating the worker is
ready to receive more work, unless using active receive mode).

Return type
None

recv(blocking=True)
Receive message to worker from manager.

Parameters
blocking (bool) – (Optional) If True (default), will block until a message is received.

Returns
message tag, Work dictionary, calc_in array

Return type
(<class ‘int’>, <class ‘dict’>, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]])

send_recv(output, calc_status=0)
Send message from worker to manager and receive response.

Parameters

• output (ndarray[Any, dtype[_ScalarType_co]]) – Output array to be sent to man-
ager.

• calc_status (int) – (Optional) Provides a task status.

Returns
message tag, Work dictionary, calc_in array

Return type
(<class ‘int’>, <class ‘dict’>, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]])

request_cancel_sim_ids(sim_ids)
Request cancellation of sim_ids.

Parameters
sim_ids (List[int]) – A list of sim_ids to cancel.

A message is sent to the manager to mark requested sim_ids as cancel_requested.

Allocation Helpers

These routines are used within custom allocation functions to help prepare Work structures for workers. See the routines
within libensemble/alloc_funcs/ for examples.

exception alloc_support.AllocException

Raised for any exception in the alloc support

class alloc_support.AllocSupport(W , manage_resources=False, persis_info={}, libE_info={},
user_resources=None, user_scheduler=None)

A helper class to assist with writing allocation functions.

This class contains methods for common operations like populating work units, determining which workers are
available, evaluating what values need to be distributed to workers, and others.

92 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Note that since the alloc_f is called periodically by the Manager, this class instance (if used) will be recre-
ated/destroyed on each loop.

assign_resources(rsets_req, use_gpus=None, user_params=[])
Schedule resource sets to a work record if possible.

For default scheduler, if more than one group (node) is required, will try to find even split, otherwise
allocates whole nodes.

Raises InsufficientFreeResources if the required resources are not currently available, or
InsufficientResourcesError if the required resources do not exist.

Parameters

• rsets_req – Int. Number of resource sets to request.

• use_gpus – Bool. Whether to use GPU resource sets.

• user_params – List of Integers. User parameters num_procs, num_gpus.

Returns
List of Integers. Resource set indices assigned.

avail_worker_ids(persistent=None, active_recv=False, zero_resource_workers=None,
gen_workers=None)

Returns available workers as a list of IDs, filtered by the given options.

Parameters

• persistent – (Optional) Int. Only return workers with given persis_state (1=sim,
2=gen).

• active_recv – (Optional) Boolean. Only return workers with given active_recv state.

• zero_resource_workers – (Optional) Boolean. Only return workers that require no
resources.

• gen_workers – (Optional) Boolean. If True, return gen-only workers. If False, return all
other workers.

Returns
List of worker IDs.

If there are no zero resource workers defined, then the zero_resource_workers argument will be ignored.

count_gens()

Returns the number of active generators.

test_any_gen()

Returns True if a generator worker is active.

count_persis_gens()

Return the number of active persistent generators.

sim_work(wid, H, H_fields, H_rows, persis_info, **libE_info)
Add sim work record to given Work dictionary.

Includes evaluation of required resources if the worker is not in a persistent state.

Parameters

• wid – Int. Worker ID.

• H – History array. For parsing out requested resource sets.

2.8. Convenience Tools and Functions 93

libEnsemble User Manual, Release 1.3.0+dev

• H_fields – Which fields from H to send.

• H_rows – Which rows of H to send.

• persis_info – Worker specific persis_info dictionary.

Returns
a Work entry.

Additional passed parameters are inserted into libE_info in the resulting work record.

If rset_team is passed as an additional parameter, it will be honored, assuming that any resource checking
has already been done.

gen_work(wid, H_fields, H_rows, persis_info, **libE_info)
Add gen work record to given Work dictionary.

Includes evaluation of required resources if the worker is not in a persistent state.

Parameters

• Work – Work dictionary.

• wid – Worker ID.

• H_fields – Which fields from H to send.

• H_rows – Which rows of H to send.

• persis_info – Worker specific persis_info dictionary.

Returns
A Work entry.

Additional passed parameters are inserted into libE_info in the resulting work record.

If rset_team is passed as an additional parameter, it will be honored, and assume that any resource check-
ing has already been done. For example, passing rset_team=[], would ensure that no resources are
assigned.

all_sim_started(H, pt_filter=None, low_bound=None)
Returns True if all expected points have started their sim.

Excludes cancelled points.

Parameters

• pt_filter – (Optional) Boolean array filtering expected returned points in H.

• low_bound – (Optional) Lower bound for testing all returned.

Returns
True if all expected points have started their sim.

all_sim_ended(H, pt_filter=None, low_bound=None)
Returns True if all expected points have had their sim_end.

Excludes cancelled points that were not already sim_started.

Parameters

• pt_filter – (Optional) Boolean array filtering expected returned points in H.

• low_bound – (Optional) Lower bound for testing all returned.

94 Chapter 2. Constructing Workflows

libEnsemble User Manual, Release 1.3.0+dev

Returns
True if all expected points have had their sim_end.

all_gen_informed(H, pt_filter=None, low_bound=None)
Returns True if gen has been informed of all expected points.

Excludes cancelled points that were not already given out.

Parameters

• pt_filter – (Optional) Boolean array filtering expected sim_end points in H.

• low_bound – (Optional) Lower bound for testing all returned.

Returns
True if gen have been informed of all expected points.

points_by_priority(H, points_avail, batch=False)
Returns indices of points to give by priority.

Parameters

• points_avail – Indices of points that are available to give.

• batch – (Optional) Boolean. Should batches of points with the same priority be given
simultaneously.

Returns
An array of point indices to give.

skip_canceled_points(H, persis_info)
Increments the “next_to_give” field in persis_info to skip any cancelled points

2.8. Convenience Tools and Functions 95

Chapter 3
Running libEnsemble

3.1 Introduction

libEnsemble runs with one manager and multiple workers. Each worker may run either a generator or simulator function
(both are Python scripts). Generators determine the parameters/inputs for simulations. Simulator functions run and
manage simulations, which often involve running a user application (see Executor).

Note: As of version 1.3.0, the generator can be run as a thread on the manager, using the libE_specs option
gen_on_manager. When using this option, set the number of workers desired for running simulations. See Running
generator on the manager for more details.

To use libEnsemble, you will need a calling script, which in turn will specify generator and simulator functions. Many
examples are available.

There are currently three communication options for libEnsemble (determining how the Manager and Workers com-
municate). These are mpi, local, tcp. The default is mpi.

Note: You do not need the mpi communication mode to use the MPI Executor. The communication modes described
here only refer to how the libEnsemble manager and workers communicate.

MPI Comms

This option uses mpi4py for the Manager/Worker communication. It is used automatically if you run your libEnsemble
calling script with an MPI runner such as:

mpirun -np N python myscript.py

where N is the number of processes. This will launch one manager and N-1 workers.

This option requires mpi4py to be installed to interface with the MPI on your system. It works on a standalone system,
and with both central and distributed modes of running libEnsemble on multi-node systems.

It also potentially scales the best when running with many workers on HPC systems.

Limitations of MPI mode

96

https://mpi4py.readthedocs.io/en/stable/

libEnsemble User Manual, Release 1.3.0+dev

If launching MPI applications from workers, then MPI is nested. This is not supported with Open MPI. This can
be overcome by using a proxy launcher (see Balsam). This nesting does work with MPICH and its derivative MPI
implementations.

It is also unsuitable to use this mode when running on the launch nodes of three-tier systems (e.g., Summit). In that
case local mode is recommended.

Local Comms

Uses Python’s built-in multiprocessing module. The comms type local and number of workers nworkers may be
provided in libE_specs. Then run:

python myscript.py

Or, if the script uses the parse_args function or an Ensemble object with Ensemble(parse_args=True), you can
specify these on the command line:

python myscript.py --comms local --nworkers N

This will launch one manager and N workers.

libEnsemble will run on one node in this scenario. To disallow this node from app-launches (if running libEnsem-
ble on a compute node), set libE_specs["dedicated_mode"] = True.

This mode is often used to run on a launch node of a three-tier system (e.g., Summit), ensuring the whole compute-node
allocation is available for launching apps. Make sure there are no imports of mpi4py in your Python scripts.

Note that on macOS (since Python 3.8) and Windows, the default multiprocessing method is "spawn" instead
of "fork"; to resolve many related issues, we recommend placing calling script code in an if __name__ ==
"__main__": block.

Limitations of local mode

• Workers cannot be distributed across nodes.

• In some scenarios, any import of mpi4py will cause this to break.

• Does not have the potential scaling of MPI mode, but is sufficient for most users.

TCP Comms

Run the Manager on one system and launch workers to remote systems or nodes over TCP. Configure through
libE_specs, or on the command line if using an Ensemble object with Ensemble(parse_args=True),

Reverse-ssh interface

Set comms to ssh to launch workers on remote ssh-accessible systems. This co-locates workers, functions, and any
applications. User functions can also be persistent, unlike when launching remote functions via Globus Compute.

The remote working directory and Python need to be specified. This may resemble:

python myscript.py --comms ssh --workers machine1 machine2 --worker_pwd /home/workers --
→˓worker_python /home/.conda/.../python

Limitations of TCP mode

• There cannot be two calls to libE() or Ensemble.run() in the same script.

3.1. Introduction 97

https://www.mpich.org/
https://docs.python.org/3/library/multiprocessing.html

libEnsemble User Manual, Release 1.3.0+dev

3.2 Further Command Line Options

See the parse_args function in Convenience Tools for further command line options.

3.3 Persistent Workers

In a regular (non-persistent) worker, the user’s generator or simulation function is called whenever the worker receives
work. A persistent worker is one that continues to run the generator or simulation function between work units, main-
taining the local data environment.

A common use-case consists of a persistent generator (such as persistent_aposmm) that maintains optimization data
while generating new simulation inputs. The persistent generator runs on a dedicated worker while in persistent mode.
This requires an appropriate allocation function that will run the generator as persistent.

When running with a persistent generator, it is important to remember that a worker will be dedicated to the generator
and cannot run simulations. For example, the following run:

mpirun -np 3 python my_script.py

starts one manager, one worker with a persistent generator, and one worker for running simulations.

If this example was run as:

mpirun -np 2 python my_script.py

No simulations will be able to run.

3.4 Running generator on the manager

The majority of libEnsemble use cases run a single generator. The libE_specs option gen_on_manager will cause
the generator function to run on a thread on the manager. This can run persistent user functions, sharing data structures
with the manager, and avoids additional communication to a generator running on a worker. When using this option,
the number of workers specified should be the (maximum) number of concurrent simulations.

If modifying a workflow to use gen_on_manager consider the following.

• Set nworkers to the number of workers desired for running simulations.

• If using add_unique_random_streams() to seed random streams, the default generator seed will be zero.

• If you have a line like libE_specs["nresource_sets"] = nworkers -1, this line should be removed.

• If the generator does use resources, nresource_sets can be increased as needed so that the generator and all
simulations are resourced.

98 Chapter 3. Running libEnsemble

libEnsemble User Manual, Release 1.3.0+dev

3.5 Environment Variables

Environment variables required in your run environment can be set in your Python sim or gen function. For example:

os.environ["OMP_NUM_THREADS"] = 4

set in your simulation script before the Executor submit command will export the setting to your run. For running a
bash script in a sub environment when using the Executor, see the env_script option to the MPI Executor.

3.6 liberegister / libesubmit

Command-line utilities for preparing and launching libEnsemble workflows onto almost any machine and any scheduler,
using a PSI/J Python implementation.

liberegister

Creates an initial, platform-independent PSI/J serialization of a libEnsemble submission. Run this utility on a script:

liberegister my_calling_script.py --comms local --nworkers 4

This produces an initial my_calling_script.json serialization conforming to PSI/J’s specification:

my_calling_script.json

{
"version": 0.1,
"type": "JobSpec",
"data": {

"name": "libe-job",
"executable": "python",
"arguments": [

"my_calling_script.py",
"--comms",
"local",
"--nworkers",
"4"

],
"directory": null,
"inherit_environment": true,
"environment": {

"PYTHONNOUSERSITE": "1"
},
"stdin_path": null,
"stdout_path": null,
"stderr_path": null,
"resources": {

"node_count": 1,
"process_count": null,
"process_per_node": null,
"cpu_cores_per_process": null,

(continues on next page)

3.5. Environment Variables 99

https://exaworks.org/psij

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

"gpu_cores_per_process": null,
"exclusive_node_use": true

},
"attributes": {

"duration": "30",
"queue_name": null,
"project_name": null,
"reservation_id": null,
"custom_attributes": {}

},
"launcher": null

}
}

libesubmit

Further parameterizes a serialization, and submits a corresponding Job to the specified scheduler:

libesubmit my_calling_script.json -q debug -A project -s slurm --nnodes 8

Results in:

*** libEnsemble 0.9.3 ***
Imported PSI/J serialization: my_calling_script.json. Preparing submission...
Calling script: my_calling_script.py
...found! Proceeding.
Submitting Job!: Job[id=ce4ead75-a3a4-42a3-94ff-c44b3b2c7e61, native_id=None,␣
→˓executor=None, status=JobStatus[NEW, time=1658167808.5125017]]

$ squeue --long --users=user
Mon Jul 18 13:10:15 2022

JOBID PARTITION NAME USER STATE TIME TIME_LIMI NODES␣
→˓NODELIST(REASON)

2508936 debug ce4ead75 user PENDING 0:00 30:00 8 (Priority)

This also produces a Job-specific representation, e.g:

8ba9de56.my_calling_script.json

{
"version": 0.1,
"type": "JobSpec",
"data": {

"name": "libe-job",
"executable": "/Users/jnavarro/miniconda3/envs/libe/bin/python3.9",
"arguments": [

"my_calling_script.py",
"--comms",
"local",
"--nworkers",

(continues on next page)

100 Chapter 3. Running libEnsemble

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

"4"
],
"directory": "/home/user/libensemble/scratch",
"inherit_environment": true,
"environment": {

"PYTHONNOUSERSITE": "1"
},
"stdin_path": null,
"stdout_path": "8ba9de56.my_calling_script.out",
"stderr_path": "8ba9de56.my_calling_script.err",
"resources": {

"node_count": 8,
"process_count": null,
"process_per_node": null,
"cpu_cores_per_process": null,
"gpu_cores_per_process": null,
"exclusive_node_use": true

},
"attributes": {

"duration": "30",
"queue_name": "debug",
"project_name": "project",
"reservation_id": null,
"custom_attributes": {}

},
"launcher": null

}
}

If libesubmit is run on a .json serialization from liberegister and can’t find the specified calling script, it’ll help search
for matching candidate scripts.

3.7 Further Run Information

For running on multi-node platforms and supercomputers, there are alternative ways to configure libEnsemble to re-
sources. See the Running on HPC Systems guide for more information, including some examples for specific sys-
tems.

3.7. Further Run Information 101

Chapter 4
Running on HPC Systems

4.1 Central vs. Distributed

libEnsemble has been developed, supported, and tested on systems of highly varying scales, from laptops to thousands
of compute nodes. On multi-node systems, there are two basic modes of configuring libEnsemble to run and launch
tasks (user applications) on the available nodes.

The first mode we refer to as central mode, where the libEnsemble manager and worker processes are grouped onto
one or more dedicated nodes. Workers launch applications onto the remaining allocated nodes:

Alternatively, in distributed mode, the libEnsemble (manager/worker) processes will share nodes with submitted tasks.
This enables libEnsemble, using the mpi4py communicator, to be run with the workers spread across nodes so as to be
co-located with their tasks.

102

libEnsemble User Manual, Release 1.3.0+dev

Configurations with multiple nodes per worker or multiple workers per node are both common use cases. The dis-
tributed approach allows the libEnsemble worker to read files produced by the application on local node storage. HPC
systems that allow only one application to be launched to a node at any one time prevent distributed configuration.

4.2 Configuring the Run

On systems with a job scheduler, libEnsemble is typically run within a single job submission. All user simulations
will run on the nodes within that allocation.

How does libEnsemble know where to run tasks (user applications)?

The libEnsemble Executor can be initialized from the user calling script, and then used by workers to run tasks.
The Executor will automatically detect the nodes available on most systems. Alternatively, the user can provide a
file called node_list in the run directory. By default, the Executor will divide up the nodes evenly to each worker.
If the argument libE_specs["dedicated_mode"]=True is used when initializing libEnsemble, then any node that
is running a libEnsemble manager or worker will be removed from the node-list available to the workers, ensuring
libEnsemble has dedicated nodes.

To run in central mode using a 5-node allocation with 4 workers: From the head node of the allocation:

mpirun -np 5 python myscript.py

or:

python myscript.py --comms local --nworkers 4

Either of these will run libEnsemble (inc. manager and 4 workers) on the first node. The remaining 4
nodes will be divided among the workers for submitted applications. If the same run was performed without
libE_specs["dedicated_mode"]=True, runs could be submitted to all 5 nodes. The number of workers can be
modified to allow either multiple workers to map to each node or multiple nodes per worker.

To launch libEnsemble distributed requires a less trivial libEnsemble run script. For example:

mpirun -np 5 -ppn 1 python myscript.py

would launch libEnsemble with 5 processes across 5 nodes. However, the manager would have its own node, which is
likely wasteful. More often, a machinefile is used to add the manager to the first node. In the examples directory,
you can find an example submission script, configured to run libensemble distributed, with multiple workers per node
or multiple nodes per worker, and adding the manager onto the first node.

HPC systems that only allow one application to be launched to a node at any one time, will not allow a distributed
configuration.

4.2. Configuring the Run 103

libEnsemble User Manual, Release 1.3.0+dev

4.3 Systems with Launch/MOM Nodes

Some large systems have a 3-tier node setup. That is, they have a separate set of launch nodes (known as MOM nodes
on Cray Systems). User batch jobs or interactive sessions run on a launch node. Most such systems supply a special
MPI runner that has some application-level scheduling capability (e.g., aprun, jsrun). MPI applications can only be
submitted from these nodes. Examples of these systems include Summit and Sierra.

There are two ways of running libEnsemble on these kinds of systems. The first, and simplest, is to run libEnsemble on
the launch nodes. This is often sufficient if the worker’s simulation or generation functions are not doing much work
(other than launching applications). This approach is inherently centralized. The entire node allocation is available for
the worker-launched tasks.

However, running libEnsemble on the compute nodes is potentially more scalable and will better manage simulation
and generation functions that contain considerable computational work or I/O. Therefore the second option is to use
proxy task-execution services like Balsam.

4.4 Balsam - Externally Managed Applications

Running libEnsemble on the compute nodes while still submitting additional applications requires alternative Executors
that connect to external services like Balsam. Balsam can take tasks submitted by workers and execute them on the
remaining compute nodes, or to entirely different systems.

Fig. 1: (New) Multi-System: libEnsemble + BalsamExecutor

Submission scripts for running on launch/MOM nodes and for using Balsam, can be found in the examples.

104 Chapter 4. Running on HPC Systems

https://balsam.readthedocs.io/en/latest/
https://balsam.readthedocs.io/en/latest/

libEnsemble User Manual, Release 1.3.0+dev

4.5 Mapping Tasks to Resources

The resource manager can detect system resources, and partition these to workers. The MPI Executor ac-
cesses the resources available to the current worker when launching tasks.

4.5.1 Zero-resource workers

Users with persistent gen_f functions may notice that the persistent workers are still automatically assigned system
resources. This can be resolved by fixing the number of resource sets.

4.6 Overriding Auto-Detection

libEnsemble can automatically detect system information. This includes resource information, such as available nodes
and the number of cores on the node, and information about available MPI runners.

System detection for resources can be overridden using the resource_info libE_specs option.

When using the MPI Executor, it is possible to override the detected information using the custom_info argument. See
the MPI Executor for more.

4.7 Globus Compute - Remote User Functions

Alternatively to much of the above, if libEnsemble is running on some resource with internet access (laptops, login
nodes, other servers, etc.), workers can be instructed to launch generator or simulator user function instances to sepa-
rate resources from themselves via Globus Compute (formerly funcX), a distributed, high-performance function-as-a-
service platform:

This is useful for running ensembles across machines and heterogeneous resources, but comes with several caveats:

1. User functions registered with Globus Compute must be non-persistent, since manager-worker communicators
can’t be serialized or used by a remote resource.

4.5. Mapping Tasks to Resources 105

https://www.globus.org/compute

libEnsemble User Manual, Release 1.3.0+dev

2. Likewise, the Executor.manager_poll() capability is disabled. The only available control over remote func-
tions by workers is processing return values or exceptions when they complete.

3. Globus Compute imposes a handful of task-rate and data limits on submitted functions.

4. Users are responsible for authenticating via Globus and maintaining their Globus Compute endpoints on their
target systems.

Users can still define Executor instances within their user functions and submit MPI applications normally, as long as
libEnsemble and the target application are accessible on the remote system:

Within remote user function
from libensemble.executors import MPIExecutor
exctr = MPIExecutor()
exctr.register_app(full_path="/home/user/forces.x", app_name="forces")
task = exctr.submit(app_name="forces", num_procs=64)

Specify a Globus Compute endpoint in either sim_specs or gen_specs via the globus_compute_endpoint argu-
ment. For example:

from libensemble.specs import SimSpecs

sim_specs = SimSpecs(
sim_f = sim_f,
inputs = ["x"],
out = [("f", float)],
globus_compute_endpoint = "3af6dc24-3f27-4c49-8d11-e301ade15353",

)

See the libensemble/tests/scaling_tests/globus_compute_forces directory for a complete remote-
simulation example.

4.8 Instructions for Specific Platforms

The following subsections have more information about configuring and launching libEnsemble on specific HPC sys-
tems.

4.8.1 Aurora

Aurora is an Intel/HPE EX supercomputer located in the ALCF at Argonne National Laboratory. Each compute node
contains two Intel (Sapphire Rapids) Xeon CPUs and six Intel Xe GPUs (Ponte Vecchio), each with two tiles.

The PBS scheduler is used to submit jobs from login nodes to run on compute nodes.

106 Chapter 4. Running on HPC Systems

https://globus-compute.readthedocs.io/en/latest/limits.html
https://www.globus.org/
https://globus-compute.readthedocs.io/en/latest/endpoints.html
https://www.alcf.anl.gov/support-center/aurorasunspot/getting-started-aurora
https://www.alcf.anl.gov/

libEnsemble User Manual, Release 1.3.0+dev

Configuring Python and Installation

To obtain Python use:

module use /soft/modulefiles
module load frameworks

To obtain libEnsemble:

pip install libensemble

See here for more information on advanced options for installing libEnsemble, including using Spack.

Example

To run the forces_gpu tutorial on Aurora.

To obtain the example you can git clone libEnsemble - although only the forces sub-directory is needed:

git clone https://github.com/Libensemble/libensemble
cd libensemble/libensemble/tests/scaling_tests/forces/forces_app

To compile forces (a C with OpenMP target application):

mpicc -DGPU -O3 -fiopenmp -fopenmp-targets=spir64 -o forces.x forces.c

Now go to forces_gpu directory:

cd ../forces_gpu

To make use of all available GPUs, open run_libe_forces.py and adjust the exit_criteria to do more simulations.
The following will do two simulations for each worker:

Instruct libEnsemble to exit after this many simulations
ensemble.exit_criteria = ExitCriteria(sim_max=nsim_workers*2)

Now grab an interactive session on two nodes (or use the batch script at ../submission_scripts/
submit_pbs_aurora.sh):

qsub -A <myproject> -l select=2 -l walltime=15:00 -lfilesystems=home -q EarlyAppAccess -I

Once in the interactive session, you may need to reload the frameworks module:

cd $PBS_O_WORKDIR
module use /soft/modulefiles
module load frameworks

Then in the session run:

python run_libe_forces.py --comms local --nworkers 13

This provides twelve workers for running simulations (one for each GPU across two nodes). An extra worker is added
to run the persistent generator. The GPU settings for each worker simulation are printed.

Looking at libE_stats.txt will provide a summary of the runs.

4.8. Instructions for Specific Platforms 107

libEnsemble User Manual, Release 1.3.0+dev

Using tiles as GPUs

If you wish to treat each tile as its own GPU, then add the libE_specs option use_tiles_as_gpus=True, so the
libE_specs block of run_libe_forces.py becomes:

ensemble.libE_specs = LibeSpecs(
num_resource_sets=nsim_workers,
sim_dirs_make=True,
use_tiles_as_gpus=True,

)

Now you can run again but with twice the workers for running simulations (each will use one GPU tile):

python run_libe_forces.py --comms local --nworkers 25

Note that the forces example will automatically use the GPUs available to each worker (with one MPI rank per GPU),
so if fewer workers are provided, more than one GPU will be used per simulation.

Also see forces_gpu_var_resources and forces_multi_app examples for cases that use varying processor/GPU
counts per simulation.

Demonstration

Note that a video demonstration of the forces_gpu example on Frontier is also available. The workflow is identical when
running on Aurora, with the exception of different compiler options and numbers of workers (because the numbers of
GPUs on a node differs).

4.8.2 Bebop

Bebop is a Cray CS400 cluster with Intel Broadwell and Knights Landing compute nodes available in the Laboratory
Computing Resources Center (LCRC) at Argonne National Laboratory.

Configuring Python

Begin by loading the Python 3 Anaconda module:

module load anaconda3

Create a conda virtual environment in which to install libEnsemble and all dependencies:

conda config --add channels intel
conda create --name my_env intelpython3_core python=3
source activate my_env

108 Chapter 4. Running on HPC Systems

https://youtu.be/H2fmbZ6DnVc
https://www.lcrc.anl.gov/systems/bebop
https://www.anaconda.com/
https://conda.io/en/latest/

libEnsemble User Manual, Release 1.3.0+dev

Installing libEnsemble and Dependencies

You should have an indication that the virtual environment is activated. Start by installing mpi4py in this environment,
making sure to reference the preinstalled Intel MPI compiler. Your prompt should be similar to the following block:

CC=mpiicc MPICC=mpiicc pip install mpi4py --no-binary mpi4py

libEnsemble can then be installed via pip or conda. To install via pip:

pip install libensemble

To install via conda:

conda config --add channels conda-forge
conda install -c conda-forge libensemble

See here for more information on advanced options for installing libEnsemble.

Job Submission

Bebop uses Slurm for job submission and management. The two commands you’ll likely use the most to run jobs are
srun and sbatch for running interactively and batch, respectively.

libEnsemble node-worker affinity is especially flexible on Bebop. By adjusting srun runtime options users may assign
multiple libEnsemble workers to each allocated node(oversubscription) or assign multiple nodes per worker.

Interactive Runs

You can allocate four Knights Landing nodes for thirty minutes through the following:

salloc -N 4 -p knl -A [username OR project] -t 00:30:00

With your nodes allocated, queue your job to start with four MPI ranks:

srun -n 4 python calling.py

mpirun should also work. This line launches libEnsemble with a manager and three workers to one allocated compute
node, with three nodes available for the workers to launch calculations with the Executor or a launch command. This
is an example of running in centralized mode, and, if using the Executor, libEnsemble should be initiated with
libE_specs["dedicated_mode"]=True

Note: When performing a distributedMPI libEnsemble run and not oversubscribing, specify one more MPI process
than the number of allocated nodes. The manager and first worker run together on a node.

If you would like to interact directly with the compute nodes via a shell, the following starts a bash session on a Knights
Landing node for thirty minutes:

srun --pty -A [username OR project] -p knl -t 00:30:00 /bin/bash

Note: You will need to reactivate your conda virtual environment and reload your modules! Configuring this routine
to occur automatically is recommended.

4.8. Instructions for Specific Platforms 109

https://mpi4py.readthedocs.io/en/stable/
https://slurm.schedmd.com/
https://slurm.schedmd.com/srun.html

libEnsemble User Manual, Release 1.3.0+dev

Batch Runs

Batch scripts specify run settings using #SBATCH statements. A simple example for a libEnsemble use case running in
distributed MPI mode on Broadwell nodes resembles the following:

1 #!/bin/bash
2 #SBATCH -J myjob
3 #SBATCH -N 4
4 #SBATCH -p bdwall
5 #SBATCH -A myproject
6 #SBATCH -o myjob.out
7 #SBATCH -e myjob.error
8 #SBATCH -t 00:15:00
9

10 # These four lines construct a machinefile for the executor and slurm
11 srun hostname | sort -u > node_list
12 head -n 1 node_list > machinefile.$SLURM_JOBID
13 cat node_list >> machinefile.$SLURM_JOBID
14 export SLURM_HOSTFILE=machinefile.$SLURM_JOBID
15

16 srun --ntasks 5 python calling_script.py

With this saved as myscript.sh, allocating, configuring, and running libEnsemble on Bebop is achieved by running

sbatch myscript.sh

Example submission scripts for running on Bebop in distributed and centralized mode are also given in the examples.

Debugging Strategies

View the status of your submitted jobs with squeue, and cancel jobs with scancel <Job ID>.

Additional Information

See the LCRC Bebop docs here for more information about Bebop.

4.8.3 Frontier

Frontier is an HPE Cray EX exascale system located at Oak Ridge Leadership Computing Facility (OLCF).

Each Frontier compute node contains one 64-core AMD EPYC and four AMD MI250X GPUs (eight logical GPUs).

Frontier uses the SLURM scheduler to submit jobs from login nodes to run on the compute nodes.

110 Chapter 4. Running on HPC Systems

https://docs.lcrc.anl.gov/bebop/running-jobs-bebop/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

libEnsemble User Manual, Release 1.3.0+dev

Installing libEnsemble

Begin by loading the python module:

module load cray-python

You may wish to create a virtual environment to install packages in (see python_on_frontier).

Example of using virtual environment

Having created a dir /ccs/proj/<project_id>/libensemble:

python -m venv /ccs/proj/<project_id>/libensemble/libe_env
source /ccs/proj/<project_id>/libensemble/libe_env/bin/activate

libEnsemble can be installed via pip:

pip install libensemble

See advanced installation for other installation options.

Example

Note that a video demonstration of this example is also available.

To run the forces_gpu tutorial on Frontier.

To obtain the example you can git clone libEnsemble - although only the forces sub-directory is needed:

git clone https://github.com/Libensemble/libensemble
cd libensemble/libensemble/tests/scaling_tests/forces/forces_app

To compile forces:

module load rocm
module load craype-accel-amd-gfx90a
cc -DGPU -I${ROCM_PATH}/include -L${ROCM_PATH}/lib -lamdhip64 -fopenmp -O3 -o forces.x␣
→˓forces.c

Now go to forces_gpu directory:

cd ../forces_gpu

Now grab an interactive session on one node:

salloc --nodes=1 -A <project_id> --time=00:10:00

Then in the session run:

python run_libe_forces.py --comms local --nworkers 8

To see GPU usage, ssh into the node you are on in another window and run:

module load rocm
watch -n 0.1 rocm-smi

4.8. Instructions for Specific Platforms 111

https://www.olcf.ornl.gov/wp-content/uploads/2-16-23_python_on_frontier.pdf
https://youtu.be/H2fmbZ6DnVc

libEnsemble User Manual, Release 1.3.0+dev

4.8.4 Improv

Improv is an LCRC production cluster at Argonne National Laboratory with 825 dual-socket compute nodes with AMD
7713 64-core processors.

Installing libEnsemble and Dependencies

To create a conda environment and install libEnsemble:

module load anaconda3
conda create --name improv_libe_env python=3
conda activate improv_libe_env
pip install libensemble

See here for more information on advanced options for installing libEnsemble, including using Spack.

Job Submission

Improv uses the PBS scheduler to submit jobs from login nodes to run on compute nodes.

Example

To run the forces_simple tutorial on Improv.

To obtain the example you can git clone libEnsemble - although only the forces sub-directory is needed:

git clone https://github.com/Libensemble/libensemble
cd libensemble/libensemble/tests/scaling_tests/forces/forces_app

To compile forces:

module load gcc openmpi aocl
mpicc -O3 -o forces.x forces.c -lm

Now go to forces_simple directory:

cd ../forces_simple/

Now grab an interactive session on one node:

qsub -A <project_id> -l select=1:mpiprocs=64 -l walltime=20:00 -qdebug -I

Once in the interactive session, you may need to reload the modules:

cd $PBS_O_WORKDIR
module load anaconda3 gcc openmpi aocl
conda activate improv_libe_env

Now run forces with five workers (one for generator and four for simulations):

python run_libe_forces.py --comms local --nworkers 5

112 Chapter 4. Running on HPC Systems

https://docs.lcrc.anl.gov/improv/running-jobs-improv/

libEnsemble User Manual, Release 1.3.0+dev

mpi4py comms

You can install mpi4py as usual having installed the Open-MPI module:

pip install mpi4py

Note if using mpi4py comms with Open-MPI, you may need to set export OMPI_MCA_coll_hcoll_enable=0 to
prevent HCOLL warnings.

4.8.5 Perlmutter

Perlmutter is an HPE Cray “Shasta” system located at NERSC. Its compute nodes are equipped with four A100 NVIDIA
GPUs.

It uses the SLURM scheduler to submit jobs from login nodes to run on the compute nodes.

Configuring Python and Installation

Begin by loading the python module. The following modules are recommended:

module load python

Create a conda environment

You can create a conda environment in which to install libEnsemble and all dependencies. For example:

conda create -n libe-pm python=3.9 -y

As Perlmutter has a shared HOME filesystem with other clusters, using the -pm suffix (for Perlmutter) is good practice.

Activate your virtual environment with:

export PYTHONNOUSERSITE=1
conda activate libe-pm

Installing libEnsemble and dependencies

Having loaded the Anaconda Python module, libEnsemble can be installed by one of the following ways.

1. Install via pip into the environment.

pip install libensemble

2. Install via conda:

conda config --add channels conda-forge
conda install -c conda-forge libensemble

See advanced installation for other installation options.

4.8. Instructions for Specific Platforms 113

https://docs.nersc.gov/systems/perlmutter/
https://www.nersc.gov/
https://conda.io/en/latest/

libEnsemble User Manual, Release 1.3.0+dev

Job Submission

Perlmutter uses Slurm for job submission and management. The two most common commands for initiating jobs are
salloc and sbatch for running in interactive and batch modes, respectively. libEnsemble runs on the compute nodes
on Perlmutter using either multi-processing (recommended) or mpi4py.

While libEnsemble should detect Perlmutter settings, you can ensure this by setting one of the following environment
variables in the submission script or interactive session for either the CPU or GPU partitions of Perlmutter:

export LIBE_PLATFORM="perlmutter_c" # For CPU partition
export LIBE_PLATFORM="perlmutter_g" # For GPU partition

Example

To run the forces_gpu tutorial on Perlmutter.

To obtain the example you can git clone libEnsemble - although only the forces sub-directory is needed:

git clone https://github.com/Libensemble/libensemble
cd libensemble/libensemble/tests/scaling_tests/forces/forces_app

To compile forces:

module load PrgEnv-nvidia cudatoolkit craype-accel-nvidia80
cc -DGPU -O3 -fopenmp -mp=gpu -target-accel=nvidia80 -o forces.x forces.c

Now go to forces_gpu directory:

cd ../forces_gpu

Now grab an interactive session on one node:

salloc -N 1 -t 20 -C gpu -q interactive -A <project_id>

Then in the session run:

export LIBE_PLATFORM="perlmutter_g"
python run_libe_forces.py --comms local --nworkers 4

To see GPU usage, ssh into the node you are on in another window and run:

watch -n 0.1 nvidia-smi

To watch video

There is a video demonstration of the forces example on Perlmutter.

Note: The video uses libEnsemble version 0.9.3, where some adjustments of the scripts are needed to run on Perlmut-
ter. These adjustments are no longer necessary. libEnsemble now correctly detects MPI runner and GPU setting on
Perlmutter and the GPU code runs with many more particles than the CPU version (forces_simple).

Example submission scripts are also given in the examples.

114 Chapter 4. Running on HPC Systems

https://slurm.schedmd.com/
https://www.youtube.com/watch?v=Av8ctYph7-Y

libEnsemble User Manual, Release 1.3.0+dev

Running libEnsemble with mpi4py

Running libEnsemble with local comms is usually sufficient on Perlmutter. However, if you need to use mpi4py, you
should install and run as follows:

module load PrgEnv-gnu cudatoolkit
MPICC="cc -target-accel=nvidia80 -shared" pip install --force --no-cache-dir --no-
→˓binary=mpi4py mpi4py

This line will build mpi4py on top of a CUDA-aware Cray MPICH.

To run using 4 workers (one manager):

export SLURM_EXACT=1
srun -n 5 python my_script.py

More information on using Python and mpi4py on Perlmutter can be found in the Python on Perlmutter documentation.

Perlmutter FAQ

Some FAQs specific to Perlmutter. See more on the FAQ page.

srun: Job ****** step creation temporarily disabled, retrying (Requested nodes are busy)

Having created a dir /ccs/proj/<project_id>/libensemble:

You may also see: srun: Job ****** step creation still disabled, retrying (Requested nodes
are busy)

This error has been encountered on Perlmutter. It is recommended to add these lines to submission scripts:

export SLURM_EXACT=1
export SLURM_MEM_PER_NODE=0

and to avoid using #SBATCH commands that may limit resources to srun job steps such as:

#SBATCH --ntasks-per-node=4
#SBATCH --gpus-per-task=1

Instead provide these to sub-tasks via the extra_args option to the MPIExecutor submit function.

GTL_DEBUG: [0] cudaHostRegister: no CUDA-capable device is detected

If using the environment variable MPICH_GPU_SUPPORT_ENABLED, then srun commands, at time of writing, expect
an option for allocating GPUs (e.g.~ --gpus-per-task=1 would allocate one GPU to each MPI task of the MPI run).
It is recommended that tasks submitted via the MPIExecutor specify this in the extra_args option to the submit
function (rather than using an #SBATCH command). This is needed even when using setting CUDA_VISIBLE_DEVICES
or other options.

If running the libEnsemble user calling script with srun, then it is recommended that MPICH_GPU_SUPPORT_ENABLED
is set in the user sim_f or gen_f function where GPU runs will be submitted, instead of in the batch script. E.g:

os.environ["MPICH_GPU_SUPPORT_ENABLED"] = "1"

4.8. Instructions for Specific Platforms 115

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/

libEnsemble User Manual, Release 1.3.0+dev

warning: /tmp/pgcudafatYDO6wtSva6K2.o: missing .note.GNU-stack section implies executable
stack

This warning has been recently encountered when compiling the forces example on Perlmutter. This does not affect
the run, but can be suppressed by adding -Wl,-znoexecstack to the build line.

Additional Information

See the NERSC Perlmutter docs for more information about Perlmutter.

4.8.6 Polaris

Polaris is a 560-node HPE system located in the ALCF at Argonne National Laboratory. The compute nodes are
equipped with one AMD EPYC Milan processor and four A100 NVIDIA GPUs. It uses the PBS scheduler to submit
jobs from login nodes to run on the compute nodes.

Configuring Python and Installation

Python and libEnsemble are available on Polaris with the conda module. Load the conda module and activate the base
environment:

module use /soft/modulefiles
module load conda; conda activate

This also gives you access to machine-optimized packages such as mpi4py.

To install further packages, including updating libEnsemble, you may either create a virtual environment on top of this
(if just using pip install) or clone the base environment (if you need conda install). More details at Python for
Polaris.

Example of Conda + virtual environment

To create a virtual environment that allows installation of further packages:

python -m venv /path/to-venv --system-site-packages
. /path/to-venv/bin/activate

where /path/to-venv can be anywhere you have write access. For future sessions, just load the conda module and
run the activate line.

You can now pip install libEnsemble:

pip install libensemble

See here for more information on advanced options for installing libEnsemble, including using Spack.

116 Chapter 4. Running on HPC Systems

https://docs.nersc.gov/systems/perlmutter/
https://www.alcf.anl.gov/polaris
https://www.alcf.anl.gov/
https://mpi4py.readthedocs.io/en/stable/
https://docs.alcf.anl.gov/polaris/data-science-workflows/python/
https://docs.alcf.anl.gov/polaris/data-science-workflows/python/

libEnsemble User Manual, Release 1.3.0+dev

Ensuring use of mpiexec

Prior to libE v 0.10.0, when using the MPIExecutor it is necessary to manually tell libEnsemble to use``mpiexec``
instead of aprun. When setting up the executor use:

from libensemble.executors.mpi_executor import MPIExecutor
exctr = MPIExecutor(custom_info={'mpi_runner':'mpich', 'runner_name':'mpiexec'})

From version 0.10.0, this is not necessary.

Job Submission

Polaris uses the PBS scheduler to submit jobs from login nodes to run on the compute nodes. libEnsemble runs on the
compute nodes using either multi-processing or mpi4py

A simple example batch script for a libEnsemble use case that runs 5 workers (e.g., one persistent generator and four
for simulations) on one node:

1 #!/bin/bash
2 #PBS -A <myproject>
3 #PBS -lwalltime=00:15:00
4 #PBS -lselect=1
5 #PBS -q debug
6 #PBS -lsystem=polaris
7 #PBS -lfilesystems=home:grand
8

9 export MPICH_GPU_SUPPORT_ENABLED=1
10

11 cd $PBS_O_WORKDIR
12

13 python run_libe_forces.py --comms local --nworkers 5

The script can be run with:

qsub submit_libe.sh

Or you can run an interactive session with:

qsub -A <myproject> -l select=1 -l walltime=15:00 -lfilesystems=home:grand -qdebug -I

You may need to reload your condamodule and reactivate venv environment again after starting the interactive session.

Demonstration

For an example that runs a small ensemble using a C application (offloading work to the GPU), see the forces_gpu
tutorial. A video demonstration of this example is also available.

4.8. Instructions for Specific Platforms 117

https://youtu.be/Ff0dYYLQzoU

libEnsemble User Manual, Release 1.3.0+dev

4.8.7 Spock/Crusher

Spock and Crusher are early-access testbed systems located at Oak Ridge Leadership Computing Facility (OLCF).

Each Spock compute node consists of one 64-core AMD EPYC “Rome” CPU and four AMD MI100 GPUs.

Each Crusher compute node contains a 64-core AMD EPYC and 4 AMD MI250X GPUs (8 Graphics Compute Dies).

These systems use the SLURM scheduler to submit jobs from login nodes to run on the compute nodes.

Configuring Python and Installation

Begin by loading the python module:

module load cray-python

Job Submission

Slurm is used for job submission and management. libEnsemble runs on the compute nodes using either
multi-processing or mpi4py.

If running more than one worker per node, the following is recommended to prevent resource conflicts:

export SLURM_EXACT=1
export SLURM_MEM_PER_NODE=0

Installing libEnsemble and dependencies

libEnsemble can be installed via pip:

pip install libensemble

Example

To run the forces_gpu tutorial on Spock or Crusher.

To obtain the example you can git clone libEnsemble - although only the forces sub-directory is needed:

git clone https://github.com/Libensemble/libensemble
cd libensemble/libensemble/tests/scaling_tests/forces/forces_app

To compile forces (in addition to cray-python module):

module load rocm
module load craype-accel-amd-gfx90a # (craype-accel-amd-gfx908 on Spock)
cc -DGPU -I${ROCM_PATH}/include -L${ROCM_PATH}/lib -lamdhip64 -fopenmp -O3 -o forces.x␣
→˓forces.c

Now go to forces_gpu directory:

cd ../forces_gpu

Now grab an interactive session on one node:

118 Chapter 4. Running on HPC Systems

https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
https://slurm.schedmd.com/

libEnsemble User Manual, Release 1.3.0+dev

salloc --nodes=1 -A <project_id> --time=00:10:00

Then in the session run:

python run_libe_forces.py --comms local --nworkers 4

To see GPU usage, ssh into the node you are on in another window and run:

module load rocm
watch -n 0.1 rocm-smi

4.8.8 Summit

Summit is an IBM AC922 system located at the Oak Ridge Leadership Computing Facility (OLCF). Each of the ap-
proximately 4,600 compute nodes on Summit contains two IBM POWER9 processors and six NVIDIA Volta V100
accelerators.

Summit features three tiers of nodes: login, launch, and compute nodes.

Users on login nodes submit batch runs to the launch nodes. Batch scripts and interactive sessions run on the launch
nodes. Only the launch nodes can submit MPI runs to the compute nodes via jsrun.

Configuring Python

Begin by loading the Python 3 Anaconda module:

$ module load python

You can now create and activate your own custom conda environment:

conda create --name myenv python=3.9
export PYTHONNOUSERSITE=1 # Make sure get python from conda env
. activate myenv

If you are installing any packages with extensions, ensure that the correct compiler module is loaded. If using mpi4py,
this must be installed from source, referencing the compiler. Currently, mpi4py must be built with gcc:

module load gcc

With your environment activated, run

CC=mpicc MPICC=mpicc pip install mpi4py --no-binary mpi4py

Installing libEnsemble

Obtaining libEnsemble is now as simple as pip install libensemble. Your prompt should be similar to the fol-
lowing line:

(my_env) user@login5:~$ pip install libensemble

Note: If you encounter pip errors, run python -m pip install --upgrade pip first

4.8. Instructions for Specific Platforms 119

https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://conda.io/en/latest/
https://mpi4py.readthedocs.io/en/stable/

libEnsemble User Manual, Release 1.3.0+dev

Or, you can install via conda:

(my_env) user@login5:~$ conda config --add channels conda-forge
(my_env) user@login5:~$ conda install -c conda-forge libensemble

See here for more information on advanced options for installing libEnsemble.

Special note on resource sets and Executor submit options

When using the portable MPI run configuration options (e.g., num_nodes) to the MPIExecutor submit function, it is
important to note that, due to the resource sets used on Summit, the options refer to resource sets as follows:

• num_procs (int, optional) – The total number resource sets for this run.

• num_nodes (int, optional) – The number of nodes on which to submit the run.

• procs_per_node (int, optional) – The number of resource sets per node.

It is recommended that the user defines a resource set as the minimal configuration of CPU cores/processes and GPUs.
These can be added to the extra_args option of the submit function. Alternatively, the portable options can be ignored
and everything expressed in extra_args.

For example, the following jsrun line would run three resource sets, each having one core (with one process), and one
GPU, along with some extra options:

jsrun -n 3 -a 1 -g 1 -c 1 --bind=packed:1 --smpiargs="-gpu"

To express this line in the submit function may look something like the following:

exctr = Executor.executor
task = exctr.submit(app_name="mycode",

num_procs=3,
extra_args="-a 1 -g 1 -c 1 --bind=packed:1 --smpiargs="-gpu""
app_args="-i input")

This would be equivalent to:

exctr = Executor.executor
task = exctr.submit(app_name="mycode",

extra_args="-n 3 -a 1 -g 1 -c 1 --bind=packed:1 --smpiargs="-gpu""
app_args="-i input")

The libEnsemble resource manager works out the resources available to each worker, but unlike some other systems,
jsrun on Summit dynamically schedules runs to available slots across and within nodes. It can also queue tasks.
This allows variable size runs to easily be handled on Summit. If oversubscription to the jsrun system is desired, then
libEnsemble’s resource manager can be disabled in the calling script via:

libE_specs["disable_resource_manager"] = True

In the above example, the task being submitted used three GPUs, which is half those available on a Summit node, and
thus two such tasks may be allocated to each node (from different workers), if they were running at the same time.

120 Chapter 4. Running on HPC Systems

https://docs.olcf.ornl.gov/systems/summit_user_guide.html#job-launcher-jsrun

libEnsemble User Manual, Release 1.3.0+dev

Job Submission

Summit uses LSF for job management and submission. For libEnsemble, the most important command is bsub for
submitting batch scripts from the login nodes to execute on the launch nodes.

It is recommended to run libEnsemble on the launch nodes (assuming workers are submitting MPI applications) using
the local communications mode (multiprocessing).

Interactive Runs

You can run interactively with bsub by specifying the -Is flag, similarly to the following:

$ bsub -W 30 -P [project] -nnodes 8 -Is

This will place you on a launch node.

Note: You will need to reactivate your conda virtual environment.

Batch Runs

Batch scripts specify run settings using #BSUB statements. The following simple example depicts configuring and
launching libEnsemble to a launch node with multiprocessing. This script also assumes the user is using the
parse_args() convenience function from libEnsemble’s tools module.

#!/bin/bash -x
#BSUB -P <project code>
#BSUB -J libe_mproc
#BSUB -W 60
#BSUB -nnodes 128
#BSUB -alloc_flags "smt1"

--- Prepare Python ---

Load conda module and gcc.
module load python
module load gcc

Name of conda environment
export CONDA_ENV_NAME=my_env

Activate conda environment
export PYTHONNOUSERSITE=1
source activate $CONDA_ENV_NAME

--- Prepare libEnsemble ---

Name of calling script
export EXE=calling_script.py

Communication Method
export COMMS="--comms local"

(continues on next page)

4.8. Instructions for Specific Platforms 121

https://www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_workshop_fuson.pdf

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

Number of workers.
export NWORKERS="--nworkers 128"

hash -r # Check no commands hashed (pip/python...)

Launch libE
python $EXE $COMMS $NWORKERS > out.txt 2>&1

With this saved as myscript.sh, allocating, configuring, and queueing libEnsemble on Summit is achieved by running

$ bsub myscript.sh

Example submission scripts are also given in the examples.

Launching User Applications from libEnsemble Workers

Only the launch nodes can submit MPI runs to the compute nodes via jsrun. This can be accomplished in user sim_f
functions directly. However, it is highly recommended that the Executor interface be used inside the sim_f or gen_f,
because this provides a portable interface with many advantages including automatic resource detection, portability,
launch failure resilience, and ease of use.

Additional Information

See the OLCF guides for more information about Summit.

4.8.9 libEnsemble with SLURM

SLURM is a popular open-source workload manager.

libEnsemble can read SLURM node lists and partition these to workers. By default this is done by reading an
environment variable.

Example SLURM submission scripts for various systems are given in the examples. Further examples are given in
some of the specific platform guides (e.g., Perlmutter guide)

By default, the MPIExecutor uses mpirun as a priority over srun as it works better in some cases. If mpirun does
not work well, then try telling the MPIExecutor to use srun when it is initiated in the calling script:

from libensemble.executors.mpi_executor import MPIExecutor
exctr = MPIExecutor(custom_info={"mpi_runner":"srun"})

122 Chapter 4. Running on HPC Systems

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

libEnsemble User Manual, Release 1.3.0+dev

Common Errors

SLURM systems can have various configurations which may affect what is required when assigning more than one
worker to any given node.

srun: Job ****** step creation temporarily disabled, retrying (Requested nodes are busy)

You may also see: srun: Job ****** step creation still disabled, retrying (Requested nodes
are busy)

It is recommended to add these to submission scripts to prevent resource conflicts:

export SLURM_EXACT=1
export SLURM_MEM_PER_NODE=0

Alternatively, the --exact option to srun, along with other relevant options can be given on any srun lines, including
the MPIExecutor submission lines via the extra_args option (from version 0.10.0, these are added automatically).

Secondly, while many configurations are possible, it is recommended to avoid using #SBATCH commands that may
limit resources to srun job steps such as:

#SBATCH --ntasks-per-node=4
#SBATCH --gpus-per-task=1

Instead provide these to sub-tasks via the extra_args option to the MPIExecutor submit function.

GTL_DEBUG: [0] cudaHostRegister: no CUDA-capable device is detected

If using the environment variable MPICH_GPU_SUPPORT_ENABLED, then srun commands may expect an option for
allocating GPUs (e.g., --gpus-per-task=1 would allocate one GPU to each MPI task of the MPI run). It is rec-
ommended that tasks submitted via the MPIExecutor specify this in the extra_args option to the submit function
(rather than using an #SBATCH command).

If running the libEnsemble calling script with srun, then it is recommended that MPICH_GPU_SUPPORT_ENABLED is
set in the user sim_f or gen_f function where GPU runs will be submitted, instead of in the batch script. For example:

os.environ["MPICH_GPU_SUPPORT_ENABLED"] = "1"

Note on Resource Binding

Note: Update: From version 0.10.0, it is recommended that GPUs are assigned automatically by libEnsemble. See the
forces_gpu tutorial as an example.

Note that the use of CUDA_VISIBLE_DEVICES and other environment variables is often a highly portable way of
assigning specific GPUs to workers, and has been known to work on some systems when other methods do not.
See the libEnsemble regression test test_persistent_sampling_CUDA_variable_resources.py for an example of setting
CUDA_VISIBLE_DEVICES in the imported simulator function (CUDA_variable_resources).

On other systems, like Perlmutter, using an option such as --gpus-per-task=1 or -gres=gpu:1 in extra_args is
sufficient to allow SLURM to find the free GPUs.

Note that the srun options such as:

4.8. Instructions for Specific Platforms 123

https://docs.nersc.gov/systems/perlmutter/running-jobs/#single-gpu-tasks-in-parallel
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_sampling_CUDA_variable_resources.py

libEnsemble User Manual, Release 1.3.0+dev

--gpu-bind=map_gpu:2,3

do not necessarily provide absolute GPU slots when there are more than one concurrent job steps (sruns) running
on a node. If desired, such options could be set using the worker resources module in a similar manner to how
CUDA_VISIBLE_DEVICES is set in the example.

Some useful commands

Find SLURM version:

scontrol --version

Find SLURM system configuration:

scontrol show config

Find SLURM partition configuration for a partition called “gpu”:

scontrol show partition gpu

4.8.10 Example Scheduler Submission Scripts

Below are example submission scripts used to configure and launch libEnsemble on a variety of high-powered systems.
See here for more information about the respective systems and configuration.

Alternatively to interacting with the scheduler or configuring submission scripts, libEnsemble now features a portable
set of command-line utilities for submitting workflows to almost any system or scheduler.

Slurm - Basic

Listing 1: /examples/libE_submission_scripts/submit_slurm_simple.sh

#!/bin/bash
#SBATCH -J libE_simple
#SBATCH -A <myproject>
#SBATCH -p <partition_name>
#SBATCH -C <constraint_name>
#SBATCH --time 10
#SBATCH --nodes 2

Usually either -p or -C above is used.

On some SLURM configurations, these ensure runs can share nodes
export SLURM_EXACT=1
export SLURM_MEM_PER_NODE=0

python libe_calling_script.py --comms local --nworkers 8

124 Chapter 4. Running on HPC Systems

libEnsemble User Manual, Release 1.3.0+dev

Bridges - Central Mode

Listing 2: /examples/libE_submission_scripts/bridges_submit_slurm_central.sh

#!/bin/bash
#SBATCH -J libE_test_central
#SBATCH -N 5
#SBATCH -p RM
#SBATCH -A <my_project>
#SBATCH -o tlib.%j.%N.out
#SBATCH -e tlib.%j.%N.error
#SBATCH -t 00:30:00

Launch script for running in central mode with mpi4py.
libEnsemble will run on a dedicated node (or nodes).
The remaining nodes in the allocation will be dedicated to worker launched apps.
Initialize Executor with auto-resources=True and central_mode=True.

User to edit these variables
export EXE=libE_calling_script.py
export NUM_WORKERS=4

mpirun -np $(($NUM_WORKERS+1)) -ppn $(($NUM_WORKERS+1)) python $EXE

To use local mode instead of mpi4py (with parse_args())
python $EXE --comms local --nworkers $NUM_WORKERS

Bebop - Central Mode

Listing 3: /examples/libE_submission_scripts/bebop_submit_slurm_central.sh

#!/bin/bash
#SBATCH -J libE_test_central
#SBATCH -N 5
#SBATCH -p knlall
#SBATCH -A <my_project>
#SBATCH -o tlib.%j.%N.out
#SBATCH -e tlib.%j.%N.error
#SBATCH -t 01:00:00

Launch script for running in central mode with mpi4py.
libEnsemble will run on a dedicated node (or nodes).
The remaining nodes in the allocation will be dedicated to worker launched apps.
Use executor with auto-resources=True and central_mode=True.

User to edit these variables
export EXE=libE_calling_script.py
export NUM_WORKERS=4
export I_MPI_FABRICS=shm:tmi

Overcommit will allow ntasks up to the no. of contexts on one node (eg. 320 on Bebop)
srun --overcommit --ntasks=$(($NUM_WORKERS+1)) --nodes=1 python $EXE

(continues on next page)

4.8. Instructions for Specific Platforms 125

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

To use local mode instead of mpi4py (with parse_args())
python calling_script.py --comms local --nworkers $NUM_WORKERS

Bebop - Distributed Mode

Listing 4: /examples/libE_submission_scripts/bebop_submit_slurm_distrib.sh

#!/bin/bash
#SBATCH -J libE_test
#SBATCH -N 4
#SBATCH -p knlall
#SBATCH -A <my_project>
#SBATCH -o tlib.%j.%N.out
#SBATCH -e tlib.%j.%N.error
#SBATCH -t 01:00:00

Launch script that runs in distributed mode with mpi4py.
Workers are evenly spread over nodes and manager added to the first node.
Requires even distribution - either multiple workers per node or nodes per worker
Option for manager to have a dedicated node.
Use of MPI Executor will ensure workers co-locate tasks with workers
If node_list file is kept, this informs libe of resources. Else, libe auto-detects.

User to edit these variables
export EXE=libE_calling_script.py
export NUM_WORKERS=4
export MANAGER_NODE=false # true = Manager has a dedicated node (assign one extra)
export USE_NODE_LIST=true # If false, allow libE to determine node_list from environment.

As libE shares nodes with user applications allow fallback if contexts overrun.
unset I_MPI_FABRICS
export I_MPI_FABRICS_LIST=tmi,tcp
export I_MPI_FALLBACK=1

If using in calling script (After N mins manager kills workers and exits cleanly)
export LIBE_WALLCLOCK=55

#---
Work out distribution
if [[$MANAGER_NODE = "true"]]; then
WORKER_NODES=$(($SLURM_NNODES-1))

else
WORKER_NODES=$SLURM_NNODES

fi

if [[$NUM_WORKERS -ge $WORKER_NODES]]; then
SUB_NODE_WORKERS=true
WORKERS_PER_NODE=$(($NUM_WORKERS/$WORKER_NODES))

else
SUB_NODE_WORKERS=false

(continues on next page)

126 Chapter 4. Running on HPC Systems

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

NODES_PER_WORKER=$(($WORKER_NODES/$NUM_WORKERS))
fi;
#---

A little useful information
echo -e "Manager process running on: $HOSTNAME"
echo -e "Directory is: $PWD"

Generate a node list with 1 node per line:
srun hostname | sort -u > node_list

Add manager node to machinefile
head -n 1 node_list > machinefile.$SLURM_JOBID

Add worker nodes to machinefile
if [[$SUB_NODE_WORKERS = "true"]]; then
awk -v repeat=$WORKERS_PER_NODE '{for(i=0; i<repeat; i++)print}' node_list \
>>machinefile.$SLURM_JOBID

else
awk -v patt="$NODES_PER_WORKER" 'NR % patt == 1' node_list \
>> machinefile.$SLURM_JOBID

fi;

if [[$USE_NODE_LIST = "false"]]; then
rm node_list
wait

fi;

Put in a timestamp
echo Starting execution at: `date`

To use srun
export SLURM_HOSTFILE=machinefile.$SLURM_JOBID

The "arbitrary" flag should ensure SLURM_HOSTFILE is picked up
cmd="srun --ntasks $(($NUM_WORKERS+1)) -m arbitrary python $EXE"
cmd="srun --ntasks $(($NUM_WORKERS+1)) -m arbitrary python $EXE $LIBE_WALLCLOCK"

echo The command is: $cmd
echo End PBS script information.
echo All further output is from the process being run and not the script.\n\n $cmd

$cmd

Print the date again -- when finished
echo Finished at: `date`

4.8. Instructions for Specific Platforms 127

libEnsemble User Manual, Release 1.3.0+dev

Summit - On Launch Nodes with Multiprocessing

Listing 5: /examples/libE_submission_scripts/summit_submit_mproc.sh

#!/bin/bash -x
#BSUB -P <project code>
#BSUB -J libe_mproc
#BSUB -W 30
#BSUB -nnodes 4
#BSUB -alloc_flags "smt1"

Script to run libEnsemble using multiprocessing on launch nodes.
Assumes Conda environment is set up.

To be run with central job management
- Manager and workers run on launch node.
- Workers submit tasks to the compute nodes in the allocation.

Name of calling script-
export EXE=libE_calling_script.py

Communication Method
export COMMS="--comms local"

Number of workers.
export NWORKERS="--nworkers 4"

Wallclock for libE. (allow clean shutdown)
export LIBE_WALLCLOCK=25 # Optional if pass to script

Name of Conda environment
export CONDA_ENV_NAME=<conda_env_name>

Need these if not already loaded
module load python
module load gcc/4.8.5

Activate conda environment
export PYTHONNOUSERSITE=1
. activate $CONDA_ENV_NAME

hash -d python # Check pick up python in conda env
hash -r # Check no commands hashed (pip/python...)

Launch libE
python $EXE $NUM_WORKERS > out.txt 2>&1 # No args. All defined in calling script
python $EXE $COMMS $NWORKERS > out.txt 2>&1 # If calling script is using parse_args()
python $EXE $LIBE_WALLCLOCK $COMMS $NWORKERS > out.txt 2>&1 # If calling script takes␣
→˓wall-clock as positional arg.

128 Chapter 4. Running on HPC Systems

libEnsemble User Manual, Release 1.3.0+dev

Cobalt - Intermediate node with Multiprocessing

Listing 6: /examples/libE_submission_scripts/cobalt_submit_mproc.sh

#!/bin/bash -x
#COBALT -t 00:30:00
#COBALT -O libE_mproc_MOM
#COBALT -n 4
#COBALT -q debug-flat-quad # Up to 8 nodes only
##COBALT -q default # For large jobs >=128 nodes
##COBALT -A <project code>

Script to run libEnsemble using multiprocessing on launch nodes.
Assumes Conda environment is set up.

To be run with central job management
- Manager and workers run on launch node.
- Workers submit tasks to the compute nodes in the allocation.

Name of calling script
export EXE=libE_calling_script.py

Communication Method
export COMMS="--comms local"

Number of workers.
export NWORKERS="--nworkers 4"

Wallclock for libE (allow clean shutdown)
export LIBE_WALLCLOCK=25 # Optional if pass to script

Name of Conda environment
export CONDA_ENV_NAME=<conda_env_name>

Conda location - theta specific
export PATH=/opt/intel/python/2017.0.035/intelpython35/bin:$PATH
export LD_LIBRARY_PATH=~/.conda/envs/$CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH
export PMI_NO_FORK=1 # Required for python kills on Theta

Unload Theta modules that may interfere with job monitoring/kills
module unload trackdeps
module unload darshan
module unload xalt

Activate conda environment
export PYTHONNOUSERSITE=1
. activate $CONDA_ENV_NAME

Launch libE
python $EXE $NUM_WORKERS > out.txt 2>&1 # No args. All defined in calling script
python $EXE $COMMS $NWORKERS > out.txt 2>&1 # If calling script is using parse_args()
python $EXE $LIBE_WALLCLOCK $COMMS $NWORKERS > out.txt 2>&1 # If calling script takes␣
→˓wall-clock as positional arg.

4.8. Instructions for Specific Platforms 129

Chapter 5
Developer’s Guide

This section contains further information for those interested in adding features to libEnsemble.

5.1 Contributing to libEnsemble

Contributions may be made via a GitHub pull request to

https://github.com/Libensemble/libensemble

libEnsemble uses the Gitflow model. Contributors should branch from, and make pull requests to, the develop branch.
The main branch is used only for releases. Pull requests may be made from a fork, for those without repository write
access.

Code should pass flake8 tests, allowing for the exceptions given in the flake8 file in the project directory. Python code
should be formatted using the latest version of black by running the following in the base libensemble directory:

black --config=.black .

Issues can be raised at

https://github.com/Libensemble/libensemble/issues

Issues may include reporting bugs or suggested features. Administrators will add issues, as appropriate, to the project
board at

https://github.com/Libensemble/libensemble/projects

By convention, user branch names should have a <type>/<name> format, where example types are feature, bugfix,
testing, docs, and experimental. Administrators may take a hotfix branch from the main, which will be merged into
main (as a patch) and develop. Administrators may also take a release branch off develop and then merge this branch
into main and develop for a release. Most branches should relate to an issue or feature.

When a branch closes a related issue, the pull request message should include the phrase “Closes #N,” where N is the
issue number. This will automatically close out the issues when they are pulled into the default branch (currently main).

libEnsemble is distributed under a 3-clause BSD license (see LICENSE). The act of submitting a pull request (with or
without an explicit Signed-off-by tag) will be understood as an affirmation of the following:

130

https://github.com/Libensemble/libensemble
https://github.com/Libensemble/libensemble/blob/develop/.flake8
https://pypi.org/project/black/
https://github.com/Libensemble/libensemble/issues
https://github.com/Libensemble/libensemble/projects

libEnsemble User Manual, Release 1.3.0+dev

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

5.2 Internal Modules

This section documents the internal modules of libEnsemble.

5.2.1 Manager Module

libEnsemble manager routines

manager.manager_main(hist, libE_specs, alloc_specs, sim_specs, gen_specs, exit_criteria, persis_info,
wcomms=[])

Manager routine to coordinate the generation and simulation evaluations

Parameters

• hist (libensemble.history.History) – A libEnsemble history type object.

• libE_specs (dict) – Specifications for libEnsemble

• alloc_specs (dict) – Specifications for the allocation function

• sim_specs (dict) – Specifications for the simulation function

• gen_specs (dict) – Specifications for the generator function

• exit_criteria (dict) – Criteria for libEnsemble to stop a run

• persis_info (dict) – Persistent information to be passed between user functions

5.2. Internal Modules 131

libEnsemble User Manual, Release 1.3.0+dev

• wcomms (list, Optional) – A list of comm type objects for each worker. Default is an empty
list.

Return type
(<class ‘dict’>, <class ‘int’>, <class ‘int’>)

class manager.Manager(hist, libE_specs, alloc_specs, sim_specs, gen_specs, exit_criteria, wcomms=[])
Manager class for libensemble.

Parameters

• libE_specs (dict)

• alloc_specs (dict)

• sim_specs (dict)

• gen_specs (dict)

• exit_criteria (dict)

• wcomms (list)

__init__(hist, libE_specs, alloc_specs, sim_specs, gen_specs, exit_criteria, wcomms=[])
Initializes the manager

Parameters

• libE_specs (dict)

• alloc_specs (dict)

• sim_specs (dict)

• gen_specs (dict)

• exit_criteria (dict)

• wcomms (list)

term_test_wallclock(max_elapsed)
Checks against wallclock timeout

Parameters
max_elapsed (int)

Return type
bool

term_test_sim_max(sim_max)
Checks against max simulations

Parameters
sim_max (int)

Return type
bool

term_test_gen_max(gen_max)
Checks against max generator calls

Parameters
gen_max (int)

Return type
bool

132 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

term_test_stop_val(stop_val)
Checks against stop value criterion

Parameters
stop_val (Any)

Return type
bool

term_test(logged=True)
Checks termination criteria

Parameters
logged (bool)

Return type
bool | int

run(persis_info)
Runs the manager

Parameters
persis_info (dict)

Return type
(<class ‘dict’>, <class ‘int’>, <class ‘int’>)

5.2.2 Worker Module

libEnsemble worker class

worker.worker_main(comm, sim_specs, gen_specs, libE_specs, workerID=None, log_comm=True,
resources=None, executor=None)

Evaluates calculations given to it by the manager.

Creates a worker object, receives work from manager, runs worker, and communicates results. This routine also
creates and writes to the workers summary file.

Parameters

• comm (communicator) – Comm object for manager communications

• sim_specs (dict) – Parameters/information for simulation calculations

• gen_specs (dict) – Parameters/information for generation calculations

• libE_specs (dict) – Parameters/information for libE operations

• workerID (int) – Manager assigned worker ID (if None, default is comm.rank)

• log_comm (bool) – Whether to send logging over comm

• resources (Resources)

• executor (Executor)

Return type
None

5.2. Internal Modules 133

libEnsemble User Manual, Release 1.3.0+dev

class worker.Worker(comm, dtypes, workerID, sim_specs, gen_specs, libE_specs)
The worker class provides methods for controlling sim and gen funcs

Object Attributes:

These are public object attributes.

Variables

• communicator (comm) – Comm object for manager communications

• dtypes (dict) – Dictionary containing type information for sim and gen inputs

• workerID (int) – The libensemble Worker ID

• sim_specs (dict) – Parameters/information for simulation calculations

• calc_iter (dict) – Dictionary containing counts for each type of calc (e.g. sim or gen)

Parameters

• comm (communicator)

• dtypes (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]]
| str | tuple[Any, int] | tuple[Any, SupportsIndex |
Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])

• workerID (int)

• sim_specs (dict)

• gen_specs (dict)

• libE_specs (dict)

__init__(comm, dtypes, workerID, sim_specs, gen_specs, libE_specs)
Initializes new worker object

Parameters

• comm (communicator)

• dtypes (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]]
| str | tuple[Any, int] | tuple[Any, SupportsIndex |
Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any,
Any])

• workerID (int)

• sim_specs (dict)

• gen_specs (dict)

• libE_specs (dict)

Return type
None

run()

Runs the main worker loop.

Return type
None

134 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

5.2.3 History Module

Note that this is the developer API reference for the internal history module. See history array for the user reference.

class libensemble.history.History(alloc_specs, sim_specs, gen_specs, exit_criteria, H0)
The History class provides methods for managing the history array.

Object Attributes:

These are set on initialization.

Variables

• H (numpy.ndarray) – History array storing rows for each point. Field names are in
libensemble/tools/fields_keys.py. Numpy structured array.

• offset (int) – Starting index for this ensemble (after H0 read in)

• index (int) – Index where libEnsemble should start filling in H

• sim_started_count (int) – Number of points given to sim functions (according to H)

• sim_ended_count (int) – Number of points evaluated (according to H)

Parameters

• alloc_specs (dict)

• sim_specs (dict)

• gen_specs (dict)

• exit_criteria (dict)

• H0 (ndarray[Any, dtype[_ScalarType_co]])

Note that index, sim_started_count and sim_ended_count reflect the total number of points in H and therefore
include those prepended to H in addition to the current run.

__init__(alloc_specs, sim_specs, gen_specs, exit_criteria, H0)
Forms the numpy structured array that records everything from the libEnsemble run

Parameters

• alloc_specs (dict)

• sim_specs (dict)

• gen_specs (dict)

• exit_criteria (dict)

• H0 (ndarray[Any, dtype[_ScalarType_co]])

Return type
None

update_history_f(D, kill_canceled_sims=False)
Updates the history after points have been evaluated

Parameters

• D (dict)

• kill_canceled_sims (bool)

5.2. Internal Modules 135

libEnsemble User Manual, Release 1.3.0+dev

Return type
None

update_history_x_out(q_inds, sim_worker, kill_canceled_sims=False)
Updates the history (in place) when new points have been given out to be evaluated

Parameters

• q_inds (numpy.typing.NDArray) – Row IDs for history array H

• sim_worker (int) – Worker ID

• kill_canceled_sims (bool)

Return type
None

update_history_to_gen(q_inds)
Updates the history (in place) when points are given back to the gen

Parameters
q_inds (ndarray[Any, dtype[_ScalarType_co]])

update_history_x_in(gen_worker, D, gen_started_time)
Updates the history (in place) when new points have been returned from a gen

Parameters

• gen_worker (int) – The worker who generated these points

• D (numpy.typing.NDArray) – Output from gen_func

• gen_started_time (int)

Return type
None

grow_H(k)
Adds k rows to H in response to gen_f producing more points than available rows in H.

Parameters
k (int) – Number of rows to add to H

Return type
None

trim_H()

Returns truncated array

Return type
ndarray[Any, dtype[_ScalarType_co]]

136 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

5.2.4 Resources Module

This module detects and returns system resources

class resources.resources.Resources(libE_specs, platform_info={}, top_level_dir=None)
Provides system resources to libEnsemble and executor.

A resources instance is always initialized unless libE_specs["disable_resource_manager"] is True.

Class Attributes:

Variables
Resources – resources: The resources object is stored here and can be retrieved in user func-
tions.

Parameters

• libE_specs (dict)

• platform_info (dict)

• top_level_dir (str)

Object Attributes:

These are set on initialization.

Variables

• top_level_dir (string) – Directory where searches for node_list file.

• glob_resources (GlobalResources) – Maintains resources available to libEnsemble.

Parameters

• libE_specs (dict)

• platform_info (dict)

• top_level_dir (str)

The following are set up after manager/worker fork.

The resource manager is set up only on the manager, while the worker resources object is set up on workers.

Variables

• resource_manager (ResourceManager) – An object that manages resource set assign-
ment to workers.

• worker_resources (WorkerResources) – An object that contains worker-specific re-
sources.

Parameters

• libE_specs (dict)

• platform_info (dict)

• top_level_dir (str)

__init__(libE_specs, platform_info={}, top_level_dir=None)
Initiate a new resources object

Parameters

• libE_specs (dict)

5.2. Internal Modules 137

libEnsemble User Manual, Release 1.3.0+dev

• platform_info (dict)

• top_level_dir (str | None)

Return type
None

classmethod init_resources(libE_specs, platform_info={})
Initiate resource management

Parameters

• libE_specs (dict)

• platform_info (dict)

Return type
None

set_worker_resources(num_workers, workerid)
Initiate the worker resources component of resources

Parameters

• num_workers (int)

• workerid (int)

Return type
None

set_resource_manager(num_workers)
Initiate the resource manager component of resources

Parameters
num_workers (int)

Return type
None

add_comm_info(libE_nodes)
Adds comms-specific information to resources

Removes libEnsemble nodes from nodelist if in dedicated_mode.

Return type
None

class resources.resources.GlobalResources(libE_specs, platform_info={}, top_level_dir=None)
Object Attributes:

These are set on initialization. :ivar str top_level_dir: Directory where searches for node_list file :ivar EnvRe-
sources env_resources: Object storing environment variables used by resources :ivar list global_nodelist: list of
all nodes available for running user applications :ivar int logical_cores_avail_per_node: Logical cores (including
SMT threads) available on a node :ivar int physical_cores_avail_per_node: Physical cores available on a node
:ivar list zero_resource_workers: List of workerIDs to have no resources. :ivar bool dedicated_mode: Whether
to remove libE nodes from global nodelist. :ivar int num_resource_sets: Number of resource sets, if supplied by
the user.

Parameters

• libE_specs (dict)

• platform_info (dict)

138 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

• top_level_dir (str)

__init__(libE_specs, platform_info={}, top_level_dir=None)
Initializes a new Resources instance

Determines the compute resources available for current allocation, including node list and cores/hardware
threads available within nodes.

The following parameters may be extracted from libE_specs

Parameters

• top_level_dir (str, Optional) – Directory libEnsemble runs in (default is current
working directory)

• dedicated_mode (bool, Optional) – If true, then dedicate nodes to running libEnsem-
ble. Dedicated mode means that any nodes running libE processes (manager and workers),
will not be available to worker-launched tasks (user applications). They will be removed
from the nodelist (if present), before dividing into resource sets.

• zero_resource_workers (List[int], Optional) – List of workers that require no
resources.

• num_resource_sets (int, Optional) – The total number of resource sets. Resources
will be divided into this number. Default: None. If None, resources will be divided by
workers (excluding zero_resource_workers).

• cores_on_node (tuple (int, int), Optional) – If supplied gives (physical cores,
logical cores) for the nodes. If not supplied, this will be auto-detected.

• gpus_on_node (int, Optional) – If supplied gives number of GPUs for the nodes. If
not supplied, this will be auto-detected.

• enforce_worker_core_bounds (bool, Optional) – If True, then libEnsemble’s ex-
ecutor will raise an exception if it detects that a worker has been instructed to launch tasks
with the number of requested processes being excessive to the number of cores allocated
to that worker, or not enough processes were requested to satisfy allocated cores.

• node_file (str, Optional) – If supplied, give the name of a file in the run directory to
use as a node-list for use by libEnsemble. Defaults to a file named “node_list”. If the file
does not exist, then the node-list will be auto-detected.

• nodelist_env_slurm (str, Optional) – The environment variable giving a node list
in Slurm format (Default: uses SLURM_NODELIST). Note: This is queried only if a
node_list file is not provided.

• nodelist_env_cobalt (str, Optional) – The environment variable giving a node list
in Cobalt format (Default: uses COBALT_PARTNAME). Note: This is queried only if a
node_list file is not provided.

• nodelist_env_lsf (str, Optional) – The environment variable giving a node list in
LSF format (Default: uses LSB_HOSTS). Note: This is queried only if a node_list file is
not provided.

• nodelist_env_lsf_shortform (str, Optional) – The environment variable giving
a node list in LSF short-form format (Default: uses LSB_MCPU_HOSTS) Note: This is
only queried if a node_list file is not provided.

• libE_specs (dict)

• platform_info (dict)

5.2. Internal Modules 139

libEnsemble User Manual, Release 1.3.0+dev

Return type
None

add_comm_info(libE_nodes)
Adds comms-specific information to resources

Removes libEnsemble nodes from nodelist if in dedicated_mode.

update_scheduler_opts(scheduler_opts)
Add scheduler options from platform_info, if not present

static is_nodelist_shortnames(nodelist)
Returns False if any entry contains a ‘.’, else True

static remove_nodes(global_nodelist_in, remove_list)
Removes any nodes in remove_list from the global nodelist

static get_global_nodelist(node_file='node_list', rundir=None, env_resources=None)
Returns the list of nodes available to all libEnsemble workers.

If a node_file exists this is used, otherwise the environment is interrogated for a node list. If a dedicated
manager node is used, then a node_file is recommended.

In dedicated mode, any node with a libE worker is removed from the list.

5.2.5 RSET Resources Module

class rset_resources.RSetResources(num_workers, resources)
A class that creates a fixed mapping of resource sets to the available resources.

Object Attributes:

These are set on initialization and include inherited. rsets below is used to abbreviate resource sets.

Variables

• num_workers (int) – Total number of workers

• num_workers_2assign2 (int) – The number of workers that will be assigned resource
sets.

• total_num_rsets (int) – The total number of resource sets.

• split_list (list) – A list of lists, where each element is the list of nodes for a given rset.

• local_rsets_list (list) – A list over rsets, where each element is the number of rsets
that share the node.

• rsets_per_node (int) – The number of rsets per node (if an rset > 1 node, this will be 1)

__init__(num_workers, resources)
Initializes a new RSetResources instance

Determines the compute resources available for each resource set.

Unless resource sets is set explicitly, the number of resource sets is the number of workers, excluding any
workers defined as zero resource workers.

Parameters

• num_workers (int) – The total number of workers

140 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

• resources (Resources) – A Resources object containing global nodelist and intranode
information

static get_group_list(split_list, gpus_per_node=0)
Return lists of group ids and slot IDs by resource set

static best_split(a, n)
Creates the most even split of list a into n parts and return list of lists

static get_rsets_on_a_node(num_rsets, resources)
Returns the number of resource sets that can be placed on each node

If there are more nodes than resource sets, returns 1.

static get_workers2assign2(num_workers, resources)
Returns workers to assign resources to

static even_assignment(nnodes, nworkers)
Returns True if workers are evenly distributed to nodes, else False

static expand_list(nnodes, nworkers, nodelist)
Duplicates each element of nodelist to best map workers to nodes.

Returns node list with duplicates, and a list of local (on-node) worker counts, both indexed by worker.

static get_split_list(num_rsets, resources)
Returns a list of lists for each worker

Assumes that self.global_nodelist has been calculated (in __init__).

static get_partitioned_nodelist(num_rsets, resources)
Returns lists of nodes available to all resource sets

Assumes that self.global_nodelist has been calculated (in __init__). Also self.global_nodelist will have
already removed non-application nodes

5.2.6 Worker Resources Module

class resources.worker_resources.ResourceManager(num_workers, resources)
Bases: RSetResources

Provides methods for managing the assignment of resource sets to workers.

Parameters

• num_workers (int)

• resources (GlobalResources)

__init__(num_workers, resources)
Initializes a new ResourceManager instance

Instantiates the numpy structured array that holds information for each resource set.

Parameters

• num_workers (int) – The number of workers

• resources (Resources) – A Resources object containing global nodelist and intranode
information

5.2. Internal Modules 141

libEnsemble User Manual, Release 1.3.0+dev

Return type
None

assign_rsets(rset_team, worker_id)
Mark the resource sets given by rset_team as assigned to worker_id

free_rsets(worker=None)
Free up assigned resource sets

static get_index_list(num_workers, num_rsets, zero_resource_list)
Map WorkerID to index into a nodelist

Parameters

• num_workers (int)

• num_rsets (int)

• zero_resource_list (List[int | Any])

Return type
List[int | None]

class resources.worker_resources.WorkerResources(num_workers, resources, workerID)

Bases: RSetResources

Provide system resources per worker to libEnsemble and executor.

Object Attributes:

Some of these attributes may be updated as the ensemble progresses.

rsets below is used to abbreviate resource sets.

Variables

• workerID (int) – workerID for this worker.

• local_nodelist (list) – A list of all nodes assigned to this worker.

• rset_team (list) – List of rset IDs currently assigned to this worker.

• num_rsets (int) – The number of resource sets assigned to this worker.

• slots (dict) – A dictionary with a list of slot IDs for each node.

• even_slots (bool) – True if each node has the same number of slots.

• matching_slots (bool) – True if each node has matching slot IDs.

• slot_count (int) – The number of slots per node if even_slots is True, else None.

• slots_on_node (list) – A list of slots IDs if matching_slots is True, else None.

• local_node_count (int) – The number of nodes available to this worker (rounded up to
whole number).

• rsets_per_node (int) – The number of rsets per node (if a rset > 1 node, will be 1).

The worker_resources attributes can be queried, and convenience functions called, via the resources class at-
tribute. For example:

With resources imported:

from libensemble.resources.resources import Resources

A user function (sim/gen) may do:

142 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

resources = Resources.resources.worker_resources
num_nodes = resources.local_node_count
cores_per_node = resources.slot_count # One CPU per GPU
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES") # Use convenience function.

Note that slots are resource sets enumerated on a node (starting with zero). If a resource set has more than one
node, then each node is considered to have slot zero.

If even_slots is True, then the attributes slot_count will give the number of slots on each node. If
matching_slots is True, then slots_on_node will give the slot IDs for all nodes. These can be used for
simplicity; otherwise, the slots dictionary can be used to get information for each node.

__init__(num_workers, resources, workerID)

Initializes a new WorkerResources instance

Determines the compute resources available for current worker, including node list and cores/hardware
threads available within nodes.

Parameters

• num_workers (int) – The number of workers

• resources (Resources) – A Resources object containing global nodelist and intranode
information

• workerID (int) – workerID of current process

get_slots_as_string(multiplier=1, delimiter=',', limit=None)
Returns list of slots as a string

Parameters

• multiplier – Optional int. Assume this many items per slot.

• delimiter – Optional int. Delimiter for output string.

• limit – Optional int. Maximum slots (truncate list after this many slots).

set_env_to_slots(env_var, multiplier=1, delimiter=',')
Sets the given environment variable to slots

Parameters

• env_var – String. Name of environment variable to set.

• multiplier – Optional int. Assume this many items per slot.

• delimiter – Optional int. Delimiter for output string.

Example usage in a sim function:

With resources imported:

from libensemble.resources.resources import Resources

Obtain worker resources:

resources = Resources.resources.worker_resources
resources.set_env_to_slots("CUDA_VISIBLE_DEVICES")

5.2. Internal Modules 143

libEnsemble User Manual, Release 1.3.0+dev

set_env_to_gpus(env_var=None, delimiter=',')
Sets the given environment variable to GPUs

Parameters

• env_var – String. Name of environment variable to set.

• delimiter – Optional int. Delimiter for output string.

Example usage in a sim function:

With resources imported:

from libensemble.resources.resources import Resources

Obtain worker resources:

resources = Resources.resources.worker_resources
resources.set_env_to_gpus("CUDA_VISIBLE_DEVICES")

doihave_gpus()

Are this workers current resource sets GPU rsets

set_rset_team(rset_team)

Update worker team and local attributes

Updates: rset_team
local_nodelist slots (dictionary with list of partitions for each node) slot_count - number of slots on
each node local_node_count

Parameters
rset_team (List[int])

Return type
None

set_gen_procs_gpus(libE_info)
Add gen supplied procs and gpus

set_slot_count()

Sets attributes even_slots and matching_slots.

Also sets slot_count if even_slots (else None) and sets slots_on_node if matching_slots (else None).

Return type
None

static get_local_nodelist(workerID, rset_team, split_list, rsets_per_node)
Returns the list of nodes available to the given worker and the slot dictionary

Parameters

• workerID (int)

• rset_team (List[int])

• split_list (List[List[str]])

• rsets_per_node (int)

Return type
Tuple[List[str], Dict[str, List[int]]]

144 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

5.2.7 Environment Resources Module

This module stores environment variables for use in resource detection

class env_resources.EnvResources(nodelist_env_slurm=None, nodelist_env_cobalt=None,
nodelist_env_pbs=None, nodelist_env_lsf=None,
nodelist_env_lsf_shortform=None)

Stores environment variables to query for system resource information

Class Attributes:

Variables

• default_nodelist_env_slurm (string) – Default SLRUM nodelist environment vari-
able

• default_nodelist_env_cobalt (string) – Default Cobalt nodelist environment vari-
able

• default_nodelist_env_pbs (string) – Default PBS nodelist environment variable
(points to nodefile)

• default_nodelist_env_lsf (string) – Default LSF nodelist environment variable

• default_nodelist_env_lsf_shortform (string) – Default LSF short-form nodelist
environment variable

Parameters

• nodelist_env_slurm (str | None)

• nodelist_env_cobalt (str | None)

• nodelist_env_pbs (str | None)

• nodelist_env_lsf (str | None)

• nodelist_env_lsf_shortform (str | None)

Object Attributes:

These are set on initialization.

Variables

• nodelists (dict) – Environment variable names to query for nodelists by scheduler

• ndlist_funcs (dict) – Functions to extract nodelists from environment by scheduler

Parameters

• nodelist_env_slurm (str | None)

• nodelist_env_cobalt (str | None)

• nodelist_env_pbs (str | None)

• nodelist_env_lsf (str | None)

• nodelist_env_lsf_shortform (str | None)

__init__(nodelist_env_slurm=None, nodelist_env_cobalt=None, nodelist_env_pbs=None,
nodelist_env_lsf=None, nodelist_env_lsf_shortform=None)

Initializes a new EnvResources instance

Determines the environment variables to query for resource information. These are either provided or given
defaults.

5.2. Internal Modules 145

libEnsemble User Manual, Release 1.3.0+dev

Parameters

• nodelist_env_slurm (String, optional) – The environment variable giving a node
list in Slurm format (Default: uses SLURM_NODELIST). Note: This is queried only if a
node_list file is not provided.

• nodelist_env_cobalt (String, optional) – The environment variable giving a node
list in Cobalt format (Default: uses COBALT_PARTNAME). Note: This is queried only if
a node_list file is not provided and disable_resource_manager=True.

• nodelist_env_pbs (String, optional) – The environment variable giving a path to
a nodefile in PBS format (Default: uses PBS_NODEFILE). This is queried if a node_list
file is not provided.

• nodelist_env_lsf (String, optional) – The environment variable giving a node list
in LSF format (Default: uses LSB_HOSTS). Note: This is queried only if a node_list file
is not provided.

• nodelist_env_lsf_shortform (String, optional) – The environment variable giv-
ing a node list in LSF short-form format (Default: uses LSB_MCPU_HOSTS). Note: This
is queried only if a node_list file is not provided.

Return type
None

get_nodelist()

Returns nodelist from environment or an empty list

Return type
List[str | Any]

static abbrev_nodenames(node_list, prefix=None)
Returns nodelist with only string up to first dot

Parameters

• node_list (List[str])

• prefix (str | None)

Return type
List[str]

static cobalt_abbrev_nodenames(node_list, prefix='nid')
Returns nodelist with prefix and leading zeros stripped

Parameters

• node_list (List[str])

• prefix (str)

Return type
List[str]

shortnames(node_list)
Returns nodelist with entries in abbreviated form

Parameters
node_list (List[str])

Return type
List[str]

146 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

static get_slurm_nodelist(node_list_env)
Gets global libEnsemble nodelist from the Slurm environment

Parameters
node_list_env (str)

Return type
List[str | Any]

static get_cobalt_nodelist(node_list_env)
Gets global libEnsemble nodelist from the Cobalt environment

Parameters
node_list_env (str)

Return type
List[str | Any]

static get_pbs_nodelist(node_list_env)
Gets global libEnsemble nodelist path from PBS environment

Parameters
node_list_env (str)

Return type
List[str | Any]

static get_lsf_nodelist(node_list_env)
Gets global libEnsemble nodelist from the LSF environment

Parameters
node_list_env (str)

Return type
List[str | Any]

static get_lsf_nodelist_frm_shortform(node_list_env)
Gets global libEnsemble nodelist from the LSF environment from short-form version

Parameters
node_list_env (str)

Return type
List[str | Any]

5.2.8 Node Resources Module

This module for detects and returns intranode resources

node_resources.get_cpu_cores(hyperthreads=False)
Returns the number of cores on the node.

If hyperthreads is true, this is the logical CPU cores; else the physical cores are returned.

Note: This returns cores available on the current node. It will not work for systems of multiple node types

Parameters
hyperthreads (bool)

Return type
int

5.2. Internal Modules 147

libEnsemble User Manual, Release 1.3.0+dev

node_resources.get_sub_node_resources(launcher=None, remote_mode=False, env_resources=None)
Returns logical and physical cores and GPUs per node as a tuple

First checks for environment values, and and then for detected values. If remote_mode is True, then detection
launches a job via the MPI launcher.

Any value that is already valid, is not overwritten by successive stages.

Parameters

• launcher (str | None)

• remote_mode (bool)

• env_resources (EnvResources | None)

Return type
Tuple[int, int, int]

5.2.9 MPI Resources Module

Manages libensemble resources related to MPI tasks launched from nodes.

exception mpi_resources.MPIResourcesException

Resources module exception

mpi_resources.get_MPI_variant()

Returns MPI base implementation

Returns
mpi_variant – MPI variant ‘aprun’ or ‘jsrun’ or ‘msmpi’ or ‘mpich’ or ‘openmpi’ or ‘srun’

Return type
str

mpi_resources.get_MPI_runner(mpi_runner=None)
Return whether mpirun is openmpi or mpich

Return type
str

mpi_resources.task_partition(num_procs, num_nodes, procs_per_node, machinefile=None)
Takes provided nprocs/nodes/ranks and outputs working configuration of procs/nodes/ranks or error

Parameters

• num_procs (int | None)

• num_nodes (int | None)

• procs_per_node (int | None)

• machinefile (str | None)

Return type
Tuple[None, None, None] | Tuple[int, int, int]

mpi_resources.get_resources(resources, num_procs=None, num_nodes=None, procs_per_node=None,
hyperthreads=False)

Reconciles user-supplied options with available worker resources to produce run configuration.

Detects resources available to worker, checks whether an existing user-supplied config is valid, and fills in any
missing config information (i.e., num_procs/num_nodes/procs_per_node)

148 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

User-supplied config options are honored, and an exception is raised if these are infeasible.

mpi_resources.create_machinefile(resources, machinefile=None, num_procs=None, num_nodes=None,
procs_per_node=None, hyperthreads=False)

Creates a machinefile based on user-supplied config options, completed by detected machine resources

Parameters

• resources (resources.Resources)

• machinefile (str | None)

• num_procs (int)

• num_nodes (int | None)

• procs_per_node (int | None)

• hyperthreads (bool)

Return type
Tuple[bool, None, int, int]

mpi_resources.get_hostlist(resources, num_nodes=None)
Creates a hostlist based on user-supplied config options.

completed by detected machine resources

5.2.10 Scheduler Module

class resources.scheduler.ResourceScheduler(user_resources=None, sched_opts={})
Calculates and returns resource set ids from a dictionary of resource sets by group. The available resource sets
are read initially from the resources module or from a resources object passed in.

Resource sets are locally provisioned to work items by a call to the assign_resources function, and a cache of
available resource sets is maintained for the life of the object (usually corresponding to one call of the allocation
function). Note that work item resources are formally assigned to workers only when a work item is sent to the
worker.

assign_resources(rsets_req, use_gpus=None, user_params=[])
Schedule resource sets to a work item if possible.

If the resources required are less than one node, they will be allocated to the smallest available sufficient
slot.

If the resources required are more than one node, then the scheduler will attempt to find an even split. If
no even split is possible, then enough additional resource sets will be assigned to enable an even split.

Returns a list of resource set IDs or raises an exception (either InsufficientResourcesError or Insufficient-
FreeResources).

find_rsets_any_slots(valid_rsets_by_group, max_grpsize, rsets_req, ngroups, rsets_per_group)
Find optimal non-matching slots across groups

find_candidate(rsets_by_group, group_list, rsets_per_group, max_upper_bound)
Find a candidate slot in a group

5.2. Internal Modules 149

libEnsemble User Manual, Release 1.3.0+dev

get_avail_rsets_by_group()

Return a dictionary of resource set IDs for each group (e.g. node)

If groups are not set they will all be in one group (group 0)

E.g: Say 8 resource sets / 2 nodes GROUP 1: [1,2,3,4] GROUP 2: [5,6,7,8]

filter_for_rset_type(avail_rsets_by_group, use_gpus)
Return avail_rsets_by_group filtered by rset type (gpus/non-gpus/all)

filter_out_rset_team(avail_rsets_by_group, rset_team)

Return avail_rsets_by_group filtered by rset type (gpus/non-gpus/all)

static get_slots_of_len(d, n)
Filter dictionary to values >= n

get_avail_slots_by_group(rsets_by_group)
Return a dictionary of free slot IDS for each group (e.g. node)

calc_rsets_even_grps(rsets_req, max_grpsize, max_groups, extend)
Calculate an even breakdown to best fit rsets_req input

check_params(user_params, ngroups)
Return True if all user params divide by number of groups, else False

calc_even_split_uneven_groups(rsets_per_grp, ngroups, rsets_req, sorted_lens, max_grps,
user_params)

Calculate an even breakdown to best fit rsets_req with uneven groups

assign_team_from_slots(slots_avail_by_group, cand_groups, cand_slots, rsets_per_group)
Assign resource set team from slots

static get_sorted_lens(avail_rsets)
Get max length of a list value in a dictionary

get_matching_slots(slots_avail_by_group, num_groups_req, rsets_per_group)
Get first N matching slots across groups

Assumes num_groups_req > 0.

check_total_rsets(rsets_req, use_gpus)
Raise exceptions if rsets requested is more than total that exist or available

5.3 Release Management

This section documents the steps to be followed for each libEnsemble release.

150 Chapter 5. Developer’s Guide

libEnsemble User Manual, Release 1.3.0+dev

5.3.1 Release Process

A release can be undertaken only by a project administrator. A project administrator should have an administrator role
on the libEnsemble GitHub, PyPI, and readthedocs pages.

Before release

• A GitHub issue is created with a checklist for the release.

• A release branch should be taken off develop (or develop pulls controlled).

• Release notes for this version are added to the documentation with release date, including a list of supported
(tested) platforms.

• Version number is updated wherever it appears (and +dev suffix is removed) (in libensemble/version.py).

• Year in LICENSE is checked for correctness. (Note: The year generated in docs by docs/conf.py should be
automatic).

• setup.py and libensemble/__init__.py are checked to ensure all information is up to date.

• Update .wci.yml in root directory (version, date and any other information).

• MANIFEST.in is checked. Locally, try out python setup.py sdist and check the created tarball contains
correct files and directories for PyPI package.

• Tests are run with source to be released (this may iterate):

– On-line CI (GitHub Actions) tests must pass.

– Launch and verify extra tests: gh workflow run libEnsemble-complete-CI --ref branch_name

– Scaling tests must be run on HPC platforms listed as supported in release notes. Test variants by platform,
launch mechanism, scale, and other factors can be configured and exported by the libE-Templater.

– Coverage must not have decreased unless there is a justifiable reason.

– Documentation must build and display correctly wherever hosted (currently readthedocs.com).

• Locally check that the example code in the README works with both local comms and mpi4py.

• Pull request from either the develop or release branch to main requesting one or more reviewers (including at
least one other administrator).

• Reviewer will check that all tests have passed and will then approve merge.

During release

An administrator will take the following steps.

• Merge the pull request into main.

• Once CI tests have passed on main:

– A GitHub release will be taken from the main (github release).

– A tarball (source distribution) will be uploaded to PyPI (PyPI release).

– The Conda package will be updated (Conda release).

– Spack package will be updated (Spack release).

• If the merge was made from a release branch (instead of develop), merge this branch into develop.

5.3. Release Management 151

https://github.com/Libensemble/libE-templater

libEnsemble User Manual, Release 1.3.0+dev

• Create a new commit on develop that appends +dev to the version number (wherever is appears).

After release

• Email the libEnsemble mailing list, and notify the everyone channel in the libEnsemble Slack workspace with
an announcement and quick summary of the release.

• Ensure all relevant GitHub issues are closed and moved to the Done column on the kanban project board (inc.
the release checklist). Those that were already in Done should be archived.

5.3.2 Release Platforms

GitHub release

The administrator should follow the GitHub instructions to draft a new release. These can currently be found at https:
//help.github.com/en/articles/creating-releases.

Both the version and title will be of the form vX.Y.Z, for example, v0.5.0.

From version 1.0, these should follow semantic versioning, where X/Y/Z are major, minor, and patch revisions.

Prior to version 1.0, the second number may include breaking API changes, and the third number may include minor
additions.

The release notes should be included in the description. These should already be in docs/release_notes.rst. The
release notes should be copied only for the current release, starting from the date. Hint: To see example of raw input,
click edit next to one of the previous releases.

Note that unlike some platforms (e.g., PyPI), GitHub releases can be edited or deleted once created.

PyPI release

libEnsemble is released on the Python Package Index (commonly known as PyPI). This enables users to pip install
the package.

The package is stored on PyPI in the form of a source distribution (commonly known as a tarball). The tarball should be
created as detailed below (which creates the distribution package using the MANIFEST.in file in the git root directory.
Do not use the tarball on GitHub, which does not follow MANIFEST.in and does not contain the required PKG-INFO
file.

You will need logon credentials for the libEnsemble PyPI. You will also need twine (which can be pip or Conda
installed).

In the package directory on the main branch (the one containing setup.py) do the following:

Create distribution:

python setup.py sdist

Upload (you will need username/password here):

twine upload dist/*

If you now run

pip install libensemble

152 Chapter 5. Developer’s Guide

https://help.github.com/en/articles/creating-releases
https://help.github.com/en/articles/creating-releases

libEnsemble User Manual, Release 1.3.0+dev

it should find the new version.

It should also be visible here:

https://pypi.org/project/libensemble/

For more details on creating PyPI packages see

https://betterscientificsoftware.github.io/python-for-hpc/tutorials/python-pypi-packaging/

Conda release

libEnsemble is released as part of the conda-forge distribution. This enables users to conda install the package.

The Conda package is created from the conda-forge feedstock repository. This repository comes with some common
dependencies and automatically creates three variants (no-mpi, mpich, Open MPI).

Automatic PR

Note that once libEnsemble has been released on PYPI a conda-forge bot will usually detect the new release and
automatically create a pull request with the changes below. It may take a few hours for this to happen. If no other
changes are required (e.g., new dependencies), then you can simply wait for the tests to pass and merge.

Manual PR

If necessary, a manual PR can be created as follows.

Create a fork of the repository (not a branch). In the file recipe/meta.yaml bump the version number, set the
build number to zero, and update the sha256. The latter can be obtained by running sha256sum on the github
tarball. For example, for v0.6.0:

sha256sum libensemble-0.6.0.tar.gz

Then, use the phrase @conda-forge-admin, please rerender in a comment in the pull request for automated rerendering.
The github-actions bot will reply with a message when ready to merge.

Release

Approvals from other libEnsemble administrators will be required. Once the pull request is merged, the new package
should become available to Conda, in the conda-forge channel, after a processing delay.

You can then check the three versions:

• conda install libensemble

• conda install libensemble=*=mpi_mpich*.

• conda install libensemble=*=mpi_openmpi*

5.3. Release Management 153

https://pypi.org/project/libensemble/
https://betterscientificsoftware.github.io/python-for-hpc/tutorials/python-pypi-packaging/
https://conda-forge.org/
https://github.com/conda-forge/libensemble-feedstock

libEnsemble User Manual, Release 1.3.0+dev

A workflow for updating libEnsemble on Spack

This assumes you have already:

• made a PyPI package for the new libEnsemble version and

• made a GitHub fork of Spack and cloned it to your local system.

Details on how to create forks can be found at https://help.github.com/articles/fork-a-repo.

You now have a configuration like that shown at https://stackoverflow.com/a/6286877/6346040.

Upstream, in this case, is the official Spack repository on GitHub. Origin is your fork on GitHub, and Local Machine
is your local clone (from your fork).

Make sure SPACK_ROOT is set and Spack binary is in your path:

export SPACK_ROOT=<PATH/TO/LOCAL/SPACK/REPO>
export PATH=$SPACK_ROOT/bin:$PATH

Do ONCE in your local checkout:

To set upstream repo:

git remote add upstream https://github.com/spack/spack.git
git remote -v # check added

(Optional) To prevent accidental pushes to upstream:

git remote set-url --push upstream no_push
git remote -v # Check for line: `upstream no_push (push)`

Updating (the develop branch)

You will now update your local machine from the upstream repo (if in doubt, make a copy of the local repo in your file
system before doing the following).

Check that the upstream remote is present:

git remote -v

Ensure that you are on the develop branch:

git checkout develop

Fetch from the upstream repo:

git fetch upstream

To update your local machine, you may wish to rebase or overwrite your local files. Select from the following:

Now make your local machine identical to the upstream repo (WARNING: Any local changes will be lost!):

git reset --hard upstream/develop

Alternatively, if you have existing local changes to go “on top” of the latest code (usually we will make our release
updates after this):

154 Chapter 5. Developer’s Guide

https://help.github.com/articles/fork-a-repo
https://stackoverflow.com/a/6286877/6346040

libEnsemble User Manual, Release 1.3.0+dev

git rebase upstream/develop

(Optional) You may want to update your forked (origin) repo on GitHub at this point. This may require a forced push:

git push origin develop --force

Making changes

The instructions below assume you make changes on the default develop branch. You can optionally create a branch to
make changes on. Doing so may be a good idea, especially if you have multiple packages, to make separate branches
for each package.

See the Spack [packaging](https://spack.readthedocs.io/en/latest/packaging_guide.html) and [contribution](https://
spack.readthedocs.io/en/latest/contribution_guide.html) guides for more info.

Quick example to update libEnsemble

This will open the libEnsemble package.py file in your editor (given by environment variable EDITOR):

spack edit py-libensemble # SPACK_ROOT must be set (see above) (Python packages use "py-
→˓" prefix)

Or just open it manually: var/spack/repos/builtin/packages/py-libensemble/package.py.

Now get the checksum for new lines:

Get the tarball (see PyPI instructions), for the new release and use:

sha256sum libensemble-*.tar.gz

Update the package.py file by pasting in the new checksum lines (and make sure the URL line points to the latest
version). Also update any dependencies for the new version.

Check package:

spack style

This will install a few Python Spack packages and run style checks on just your changes. Make adjustments if needed,
until this passes.

If okay - add, commit, and push to origin (forked repo). For example, if your version number is 1.2.2:

git commit -am "libEnsemble: add v1.2.2"
git push origin develop --force

Once the branch is pushed to the forked repo, go to GitHub and do a pull request from this branch on the fork to the
develop branch on the upstream.

5.3. Release Management 155

https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/contribution_guide.html
https://spack.readthedocs.io/en/latest/contribution_guide.html

libEnsemble User Manual, Release 1.3.0+dev

Express Summary: Make Fork Identical to Upstream

Quick summary for bringing the develop branch on a forked repo up to speed with upstream (YOU WILL LOSE ANY
CHANGES):

git remote add upstream https://github.com/spack/spack.git
git fetch upstream
git checkout develop
git reset --hard upstream/develop
git push origin develop --force

Reference: <https://stackoverflow.com/questions/9646167/clean-up-a-fork-and-restart-it-from-the-upstream/
39628366>

156 Chapter 5. Developer’s Guide

https://stackoverflow.com/questions/9646167/clean-up-a-fork-and-restart-it-from-the-upstream/39628366
https://stackoverflow.com/questions/9646167/clean-up-a-fork-and-restart-it-from-the-upstream/39628366

Chapter 6
Appendices

This section contains tutorials, frequently asked questions, examples, and other libEnsemble information.

6.1 Advanced Installation

libEnsemble can be installed from pip, Conda, or Spack.

libEnsemble requires the following dependencies, which are typically automatically installed alongside libEnsemble:

• Python >= 3.9

• NumPy >= 1.21

• psutil >= 5.9.4

• pydantic <= 1.10.12

• pyyaml >= v6.0

• tomli >= 1.2.1

Given libEnsemble’s compiled dependencies, the following installation methods each offer a trade-off between conve-
nience and the ability to customize builds, including platform-specific optimizations.

We always recommend installing in a virtual environment from Conda or another source.

Further recommendations for selected HPC systems are given in the HPC platform guides.

pip

To install the latest PyPI release:

pip install libensemble

To pip install libEnsemble from the latest develop branch:

python -m pip install --upgrade git+https://github.com/Libensemble/libensemble.
→˓git@develop

157

http://www.python.org
http://www.numpy.org
https://pypi.org/project/psutil/
https://docs.pydantic.dev/1.10/
https://pyyaml.org/
https://pypi.org/project/tomli/
https://pypi.org

libEnsemble User Manual, Release 1.3.0+dev

Installing with mpi4py

If you wish to use mpi4py with libEnsemble (choosing MPI out of the three communications options), then this
should be installed to work with the existing MPI on your system. For example, the following line:

pip install mpi4py

will use the mpicc compiler wrapper on your PATH to identify the MPI library. To specify a different compiler wrapper,
add the MPICC option. You also may wish to avoid existing binary builds; for example,:

MPICC=mpiicc pip install mpi4py --no-binary mpi4py

On Summit, the following line is recommended (with gcc compilers):

CC=mpicc MPICC=mpicc pip install mpi4py --no-binary mpi4py

conda

Install libEnsemble with Conda from the conda-forge channel:

conda config --add channels conda-forge
conda install -c conda-forge libensemble

This package comes with some useful optional dependencies, including optimizers and will install quickly as ready
binary packages.

Installing with mpi4py with Conda

If you wish to use mpi4py with libEnsemble (choosing MPI out of the three communications options), you can
use the following.

Note: For clusters and HPC systems, always install mpi4py to use the system MPI library (see pip instructions above).

For a standalone build that comes with an MPI implementation, you can install libEnsemble using one of the following
variants.

To install libEnsemble with MPICH:

conda install -c conda-forge libensemble=*=mpi_mpich*

To install libEnsemble with Open MPI:

conda install -c conda-forge libensemble=*=mpi_openmpi*

The asterisks will pick up the latest version and build.

Note: This syntax may not work without adjustments on macOS or any non-bash shell. In these cases, try:

conda install -c conda-forge libensemble='*'=mpi_mpich'*'

For a complete list of builds for libEnsemble on Conda:

conda search libensemble --channel conda-forge

158 Chapter 6. Appendices

https://docs.conda.io/en/latest/
https://www.mpich.org/
https://www.open-mpi.org/

libEnsemble User Manual, Release 1.3.0+dev

Spack

Install libEnsemble using the Spack distribution:

spack install py-libensemble

The above command will install the latest release of libEnsemble with the required dependencies only. Other optional
dependencies can be specified through variants. The following line installs libEnsemble version 0.7.2 with some com-
mon variants (e.g., using APOSMM):

spack install py-libensemble @0.7.2 +mpi +scipy +mpmath +petsc4py +nlopt

The list of variants can be found by running:

spack info py-libensemble

On some platforms you may wish to run libEnsemble without mpi4py, using a serial PETSc build. This is often
preferable if running on the launch nodes of a three-tier system (e.g., Summit):

spack install py-libensemble +scipy +mpmath +petsc4py ^py-petsc4py~mpi ^petsc~mpi~hdf5~
→˓hypre~superlu-dist

The installation will create modules for libEnsemble and the dependent packages. These can be loaded by running:

spack load -r py-libensemble

Any Python packages will be added to the PYTHONPATH when the modules are loaded. If you do not have modules
on your system you may need to install lmod (also available in Spack):

spack install lmod
. $(spack location -i lmod)/lmod/lmod/init/bash
spack load lmod

Alternatively, Spack could be used to build the serial petsc4py, and Conda could use this by loading the py-petsc4py
module thus created.

Hint: When combining Spack and Conda, you can access your Conda Python and packages in your ~/.spack/
packages.yaml while your Conda environment is activated, using CONDA_PREFIX For example, if you have an acti-
vated Conda environment with Python 3.9 and SciPy installed:

packages:
python:

externals:
- spec: "python"
prefix: $CONDA_PREFIX
buildable: False

py-numpy:
externals:
- spec: "py-numpy"
prefix: $CONDA_PREFIX/lib/python3.9/site-packages/numpy
buildable: False

py-scipy:
externals:
- spec: "py-scipy"
prefix: $CONDA_PREFIX/lib/python3.9/site-packages/scipy
buildable: True

6.1. Advanced Installation 159

https://spack.readthedocs.io/en/latest

libEnsemble User Manual, Release 1.3.0+dev

For more information on Spack builds and any particular considerations for specific systems, see the spack_libe repos-
itory. In particular, this includes some example packages.yaml files (which go in ~/.spack/). These files are used
to specify dependencies that Spack must obtain from the given system (rather than building from scratch). This may
include Python and the packages distributed with it (e.g., numpy), and will often include the system MPI library.

6.1.1 Optional Dependencies for Additional Features

The following packages may be installed separately to enable additional features:

• Balsam - Manage and submit applications to the Balsam service with our BalsamExecutor

• pyyaml and tomli - Parameterize libEnsemble via yaml or toml

• Globus Compute - Submit simulation or generator function instances to remote Globus Compute endpoints

• psi-j-python and tqdm - Use liberegister and libesubmit to submit libEnsemble jobs to any scheduler

6.2 Tutorials

6.2.1 Simple Introduction

This tutorial demonstrates the capability to perform ensembles of calculations in parallel using libEnsemble.

We recommend reading this brief Overview.

For this tutorial, our generator will produce uniform randomly sampled values, and our simulator will calculate the sine
of each. By default we don’t need to write a new allocation function.

1. Getting started

libEnsemble is written entirely in Python. Let’s make sure the correct version is installed.

python --version # This should be >= 3.9

For this tutorial, you need NumPy and (optionally) Matplotlib to visualize your results. Install libEnsemble and these
other libraries with

pip install libensemble
pip install matplotlib # Optional

If your system doesn’t allow you to perform these installations, try adding --user to the end of each command.

2. Generator

Let’s begin the coding portion of this tutorial by writing our generator function, or gen_f.

An available libEnsemble worker will call this generator function with the following parameters:

• InputArray: A selection of the History array (H), passed to the generator function in case the user wants to
generate new values based on simulation outputs. Since our generator produces random numbers, it’ll be ignored
this time.

• persis_info: Dictionary with worker-specific information. In our case, this dictionary contains NumPy Ran-
dom Stream objects for generating random numbers.

160 Chapter 6. Appendices

https://github.com/Libensemble/spack_libe
https://balsam.readthedocs.io/en/latest/
https://pyyaml.org/
https://pypi.org/project/tomli/
https://www.globus.org/compute
https://github.com/ExaWorks/psi-j-python
https://tqdm.github.io/
https://www.python.org/
https://www.numpy.org/
https://matplotlib.org/

libEnsemble User Manual, Release 1.3.0+dev

• gen_specs: Dictionary with user-defined static fields and parameters. Customizable parameters such as lower
and upper bounds and batch sizes are placed within the gen_specs["user"] dictionary.

Later on, we’ll populate gen_specs and persis_info when we initialize libEnsemble.

For now, create a new Python file named sine_gen.py. Write the following:

Listing 1: examples/tutorials/simple_sine/sine_gen.py

1 import numpy as np
2

3

4 def gen_random_sample(InputArray, persis_info, gen_specs):
5 # Pull out user parameters
6 user_specs = gen_specs["user"]
7

8 # Get lower and upper bounds
9 lower = user_specs["lower"]

10 upper = user_specs["upper"]
11

12 # Determine how many values to generate
13 num = len(lower)
14 batch_size = user_specs["gen_batch_size"]
15

16 # Create empty array of "batch_size" zeros. Array dtype should match "out" fields
17 OutputArray = np.zeros(batch_size, dtype=gen_specs["out"])
18

19 # Set the "x" output field to contain random numbers, using random stream
20 OutputArray["x"] = persis_info["rand_stream"].uniform(lower, upper, (batch_size,␣

→˓num))
21

22 # Send back our output and persis_info
23 return OutputArray, persis_info

Our function creates batch_size random numbers uniformly distributed between the lower and upper bounds. A
random stream from persis_info is used to generate these values, which are then placed into an output NumPy array
that matches the dtype from gen_specs["out"].

3. Simulator

Next, we’ll write our simulator function or sim_f. Simulator functions perform calculations based on values from the
generator function. The only new parameter here is sim_specs, which serves a purpose similar to the gen_specs
dictionary.

Create a new Python file named sine_sim.py. Write the following:

Listing 2: examples/tutorials/simple_sine/sine_sim.py

1 import numpy as np
2

3

4 def sim_find_sine(InputArray, _, sim_specs):
5 # Create an output array of a single zero
6 OutputArray = np.zeros(1, dtype=sim_specs["out"])
7

(continues on next page)

6.2. Tutorials 161

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

8 # Set the zero to the sine of the InputArray value
9 OutputArray["y"] = np.sin(InputArray["x"])

10

11 # Send back our output
12 return OutputArray

Our simulator function is called by a worker for every work item produced by the generator function. This function
calculates the sine of the passed value, and then returns it so the worker can store the result.

4. Script

Now lets write the script that configures our generator and simulator functions and starts libEnsemble.

Create an empty Python file named calling.py. In this file, we’ll start by importing NumPy, libEnsemble’s setup
classes, and the generator and simulator functions we just created.

In a class called LibeSpecs we’ll specify the number of workers and the manager/worker intercommunication method.
"local", refers to Python’s multiprocessing.

1 import numpy as np
2 from sine_gen import gen_random_sample
3 from sine_sim import sim_find_sine
4

5 from libensemble import Ensemble
6 from libensemble.specs import ExitCriteria, GenSpecs, LibeSpecs, SimSpecs
7

8 if __name__ == "__main__": # Python-quirk required on macOS and windows
9 libE_specs = LibeSpecs(nworkers=4, comms="local")

We configure the settings and specifications for our sim_f and gen_f functions in the GenSpecs and SimSpecs classes,
which we saw previously being passed to our functions as dictionaries. These classes also describe to libEnsemble
what inputs and outputs from those functions to expect.

10 gen_specs = GenSpecs(
11 gen_f=gen_random_sample, # Our generator function
12 out=[("x", float, (1,))], # gen_f output (name, type, size)
13 user={
14 "lower": np.array([-3]), # lower boundary for random sampling
15 "upper": np.array([3]), # upper boundary for random sampling
16 "gen_batch_size": 5, # number of x's gen_f generates per call
17 },
18)
19

20 sim_specs = SimSpecs(
21 sim_f=sim_find_sine, # Our simulator function
22 inputs=["x"], # InputArray field names. "x" from gen_f output
23 out=[("y", float)], # sim_f output. "y" = sine("x")
24) # sim_specs_end_tag

We then specify the circumstances where libEnsemble should stop execution in ExitCriteria.

26 exit_criteria = ExitCriteria(sim_max=80) # Stop libEnsemble after 80 simulations

162 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

Now we’re ready to write our libEnsemble libE function call. ensemble.H is the final version of the history array.
ensemble.flag should be zero if no errors occur.

28 ensemble = Ensemble(sim_specs, gen_specs, exit_criteria, libE_specs)
29 ensemble.add_random_streams() # setup the random streams unique to each worker
30 ensemble.run() # start the ensemble. Blocks until completion.
31

32 history = ensemble.H # start visualizing our results
33

34 print([i for i in history.dtype.fields]) # (optional) to visualize our history array
35 print(history)

That’s it! Now that these files are complete, we can run our simulation.

python calling.py

If everything ran perfectly and you included the above print statements, you should get something similar to the fol-
lowing output (although the columns might be rearranged).

["y", "sim_started_time", "gen_worker", "sim_worker", "sim_started", "sim_ended", "x",
→˓"allocated", "sim_id", "gen_ended_time"]
[(-0.37466051, 1.559+09, 2, 2, True, True, [-0.38403059], True, 0, 1.559+09)
(-0.29279634, 1.559+09, 2, 3, True, True, [-2.84444261], True, 1, 1.559+09)
(0.29358492, 1.559+09, 2, 4, True, True, [0.29797487], True, 2, 1.559+09)
(-0.3783986, 1.559+09, 2, 1, True, True, [-0.38806564], True, 3, 1.559+09)
(-0.45982062, 1.559+09, 2, 2, True, True, [-0.47779319], True, 4, 1.559+09)
...

In this arrangement, our output values are listed on the far left with the generated values being the fourth column from
the right.

Two additional log files should also have been created. ensemble.log contains debugging or informational logging
output from libEnsemble, while libE_stats.txt contains a quick summary of all calculations performed.

Here is graphed output using Matplotlib, with entries colored by which worker performed the simulation:

6.2. Tutorials 163

libEnsemble User Manual, Release 1.3.0+dev

If you want to verify your results through plotting and installed Matplotlib earlier, copy and paste the following code
into the bottom of your calling script and run python calling.py again

37 import matplotlib.pyplot as plt
38

39 colors = ["b", "g", "r", "y", "m", "c", "k", "w"]
40

41 for i in range(1, libE_specs.nworkers + 1):
42 worker_xy = np.extract(history["sim_worker"] == i, history)
43 x = [entry.tolist()[0] for entry in worker_xy["x"]]
44 y = [entry for entry in worker_xy["y"]]
45 plt.scatter(x, y, label="Worker {}".format(i), c=colors[i - 1])
46

47 plt.title("Sine calculations for a uniformly sampled random distribution")
48 plt.xlabel("x")
49 plt.ylabel("sine(x)")
50 plt.legend(loc="lower right")
51 plt.savefig("tutorial_sines.png")

Each of these example files can be found in the repository in examples/tutorials/simple_sine.

Exercise

Write a Calling Script with the following specifications:

1. Set the generator function’s lower and upper bounds to -6 and 6, respectively

164 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/tree/develop/examples/tutorials/simple_sine

libEnsemble User Manual, Release 1.3.0+dev

2. Increase the generator batch size to 10

3. Set libEnsemble to stop execution after 160 generations using the gen_max option

4. Print an error message if any errors occurred while libEnsemble was running

Click Here for Solution

1 import numpy as np
2 from sine_gen import gen_random_sample
3 from sine_sim import sim_find_sine
4

5 from libensemble import Ensemble
6 from libensemble.specs import ExitCriteria, GenSpecs, LibeSpecs, SimSpecs
7

8 if __name__ == "__main__":
9 libE_specs = LibeSpecs(nworkers=4, comms="local")

10

11 gen_specs = GenSpecs(
12 gen_f=gen_random_sample, # Our generator function
13 out=[("x", float, (1,))], # gen_f output (name, type, size)
14 user={
15 "lower": np.array([-6]), # lower boundary for random sampling
16 "upper": np.array([6]), # upper boundary for random sampling
17 "gen_batch_size": 10, # number of x's gen_f generates per call
18 },
19)
20

21 sim_specs = SimSpecs(
22 sim_f=sim_find_sine, # Our simulator function
23 inputs=["x"], # InputArray field names. "x" from gen_f output
24 out=[("y", float)], # sim_f output. "y" = sine("x")
25)
26

27 exit_criteria = ExitCriteria(gen_max=160)
28

29 ensemble = Ensemble(sim_specs, gen_specs, exit_criteria, libE_specs)
30 ensemble.add_random_streams()
31 ensemble.run()
32

33 if ensemble.flag != 0:
34 print("Oh no! An error occurred!")

5. Next steps

libEnsemble with MPI

MPI is a standard interface for parallel computing, implemented in libraries such as MPICH and used at extreme scales.
MPI potentially allows libEnsemble’s processes to be distributed over multiple nodes and works in some circumstances
where Python’s multiprocessing does not. In this section, we’ll explore modifying the above code to use MPI instead
of multiprocessing.

We recommend the MPI distribution MPICH for this tutorial, which can be found for a variety of systems here. You also
need mpi4py, which can be installed with pip install mpi4py. If you’d like to use a specific version or distribution

6.2. Tutorials 165

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.mpich.org/
https://www.mpich.org/
https://www.mpich.org/downloads/
https://mpi4py.readthedocs.io/en/stable/install.html

libEnsemble User Manual, Release 1.3.0+dev

of MPI instead of MPICH, configure mpi4py with that MPI at installation with MPICC=<path/to/MPI_C_compiler>
pip install mpi4py If this doesn’t work, try appending --user to the end of the command. See the mpi4py docs
for more information.

Verify that MPI has been installed correctly with mpirun --version.

Modifying the script

Only a few changes are necessary to make our code MPI-compatible. For starters, comment out the libE_specs
definition:

libE_specs = LibeSpecs(nworkers=4, comms="local")

We’ll be parameterizing our MPI runtime with a parse_args=True argument to the Ensemble class instead of
libE_specs. We’ll also use an ensemble.is_manager attribute so only the first MPI rank runs the data-processing
code.

The bottom of your calling script should now resemble:

28 # replace libE_specs with parse_args=True. Detects MPI runtime
29 ensemble = Ensemble(sim_specs, gen_specs, exit_criteria, parse_args=True)
30

31 ensemble.add_random_streams()
32 ensemble.run() # start the ensemble. Blocks until completion.
33

34 if ensemble.is_manager: # only True on rank 0
35 history = ensemble.H # start visualizing our results
36 print([i for i in history.dtype.fields])
37 print(history)
38

39 import matplotlib.pyplot as plt
40

41 colors = ["b", "g", "r", "y", "m", "c", "k", "w"]
42

43 for i in range(1, ensemble.nworkers + 1):
44 worker_xy = np.extract(history["sim_worker"] == i, history)
45 x = [entry.tolist()[0] for entry in worker_xy["x"]]
46 y = [entry for entry in worker_xy["y"]]
47 plt.scatter(x, y, label="Worker {}".format(i), c=colors[i - 1])
48

49 plt.title("Sine calculations for a uniformly sampled random distribution")
50 plt.xlabel("x")
51 plt.ylabel("sine(x)")
52 plt.legend(loc="lower right")
53 plt.savefig("tutorial_sines.png")

With these changes in place, our libEnsemble code can be run with MPI by

mpirun -n 5 python calling.py

where -n 5 tells mpirun to produce five processes, one of which will be the manager process with the libEnsemble
manager and the other four will run libEnsemble workers.

This tutorial is only a tiny demonstration of the parallelism capabilities of libEnsemble. libEnsemble has been devel-
oped primarily to support research on High-Performance computers, with potentially hundreds of workers performing
calculations simultaneously. Please read our platform guides for introductions to using libEnsemble on many such
machines.

166 Chapter 6. Appendices

https://mpi4py.readthedocs.io/en/stable/install.html

libEnsemble User Manual, Release 1.3.0+dev

libEnsemble’s Executors can launch non-Python user applications and simulations across allocated compute resources.
Try out this feature with a more-complicated libEnsemble use-case within our Electrostatic Forces tutorial.

6.2.2 Executor with Electrostatic Forces

This tutorial highlights libEnsemble’s capability to portably execute and monitor external scripts or user applications
within simulation or generator functions using the executor.

This tutorial’s calling script registers a compiled executable that simulates electrostatic forces between a collection of
particles. The simulator function launches instances of this executable and reads output files to determine the result.

This tutorial uses libEnsemble’s MPI Executor, which automatically detects available MPI runners and resources.

This example also uses a persistent generator. This generator runs on a worker throughout the ensemble, producing
new simulation parameters as requested.

Getting Started

The simulation source code forces.c can be obtained directly from the libEnsemble repository in the forces_app
directory.

Assuming MPI and its C compiler mpicc are available, compile forces.c into an executable (forces.x) with:

mpicc -O3 -o forces.x forces.c -lm

Alternative build lines for different platforms can be found in the build_forces.sh file in the same directory.

Calling Script

Complete scripts for this example can be found in the forces_simple directory.

Let’s begin by writing our calling script to specify our simulation and generation functions and call libEnsemble. Create
a Python file called run_libe_forces.py containing:

1 import os
2 import sys
3

4 import numpy as np
5 from forces_simf import run_forces # Sim func from current dir
6

7 from libensemble import Ensemble
8 from libensemble.alloc_funcs.start_only_persistent import only_persistent_gens as alloc_f
9 from libensemble.executors import MPIExecutor

10 from libensemble.gen_funcs.persistent_sampling import persistent_uniform as gen_f
11 from libensemble.specs import AllocSpecs, ExitCriteria, GenSpecs, LibeSpecs, SimSpecs
12

13 if __name__ == "__main__":
14 # Initialize MPI Executor
15 exctr = MPIExecutor()
16

17 # Register simulation executable with executor
18 sim_app = os.path.join(os.getcwd(), "../forces_app/forces.x")
19

20 if not os.path.isfile(sim_app):
(continues on next page)

6.2. Tutorials 167

https://github.com/Libensemble/libensemble/tree/main/libensemble/tests/scaling_tests/forces/forces_app
https://github.com/Libensemble/libensemble/tree/main/libensemble/tests/scaling_tests/forces/forces_simple

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

21 sys.exit("forces.x not found - please build first in ../forces_app dir")
22

23 exctr.register_app(full_path=sim_app, app_name="forces")
24

25 # Parse number of workers, comms type, etc. from arguments
26 ensemble = Ensemble(parse_args=True, executor=exctr)

We first instantiate our MPI Executor. Registering an application is as easy as providing the full file-path and giving
it a memorable name. This Executor will later be used within our simulation function to launch the registered app.

The last line in the above codeblock initializes the ensemble. The parse_args parameter is used to read comms and
nworkers from the command line. This sets the respective libE_specs options.

Next, we will add basic configuration for the ensemble. As one worker will run a persistent generator, we calculate the
number of workers that need resources to run simulations. We also set sim_dirs_make so that a directory is created for
each simulation. This helps organize output and also helps prevent workers from overwriting previous results.

28 nsim_workers = ensemble.nworkers - 1 # One worker is for persistent generator
29

30 # Persistent gen does not need resources
31 ensemble.libE_specs = LibeSpecs(
32 num_resource_sets=nsim_workers, sim_dirs_make=True, ensemble_dir_path="./test_

→˓executor_forces_tutorial"
33)

Next we define the sim_specs and gen_specs. Recall that these are used to specify to libEnsemble what user functions
and input/output fields to expect, and also to parameterize user functions:

37 ensemble.sim_specs = SimSpecs(
38 sim_f=run_forces,
39 inputs=["x"],
40 outputs=[("energy", float)],
41)
42

43 ensemble.gen_specs = GenSpecs(
44 gen_f=gen_f,
45 inputs=[], # No input when starting persistent generator
46 persis_in=["sim_id"], # Return sim_ids of evaluated points to generator
47 outputs=[("x", float, (1,))],
48 user={
49 "initial_batch_size": nsim_workers,
50 "lb": np.array([1000]), # min particles
51 "ub": np.array([3000]), # max particles
52 },
53) # gen_specs_end_tag

Next, configure an allocation function, which starts the one persistent generator and farms out the simulations. We also
tell it to wait for all simulations to return their results, before generating more parameters.

55 ensemble.alloc_specs = AllocSpecs(
56 alloc_f=alloc_f,
57 user={
58 "async_return": False, # False causes batch returns

(continues on next page)

168 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

59 },
60)

Now we set exit_criteria to exit after running eight simulations.

We also give each worker a seeded random stream, via the persis_info option. These can be used for random number
generation if required.

Finally we run the ensemble.

62 # Instruct libEnsemble to exit after this many simulations
63 ensemble.exit_criteria = ExitCriteria(sim_max=8)
64

65 # Seed random streams for each worker, particularly for gen_f
66 ensemble.add_random_streams()
67

68 # Run ensemble
69 ensemble.run()

Exercise

This may take some additional browsing of the docs to complete.

Write an alternative Calling Script similar to above, but with the following differences:

1. Set libEnsemble’s logger to print debug messages.

2. Override the MPIExecutor’s detected MPI runner with "openmpi".

3. Tell the allocation function to return results to the generator asynchronously.

4. Use the ensemble function save_output() to save the History array and persis_info to files after libEnsem-
ble completes.

Click Here for Solutions

Soln 1. Debug logging gives lots of information.

from libensemble import Ensemble, logger
from libensemble.alloc_funcs.start_only_persistent import only_persistent_gens␣
→˓as alloc_f
from libensemble.executors import MPIExecutor
from libensemble.gen_funcs.persistent_sampling import persistent_uniform as␣
→˓gen_f
from libensemble.specs import AllocSpecs, ExitCriteria, GenSpecs, LibeSpecs,␣
→˓SimSpecs

logger.set_level("DEBUG")

Soln 2. This can also be specified via platform_specs option.

Initialize MPI Executor
exctr = MPIExecutor(custom_info={"mpi_runner": "openmpi"})

Soln 3. Set async_return to True in the allocation .

6.2. Tutorials 169

libEnsemble User Manual, Release 1.3.0+dev

Starts one persistent generator. Simulated values are returned in batch.
ensemble.alloc_specs = AllocSpecs(

alloc_f=alloc_f,
user={

"async_return": True,
},

)

Soln 4. End your script in the following manner to save the output based on the name of the calling script. You can
give any string in place of __file__.

Run ensemble
ensemble.run()

ensemble.save_output(__file__)

Simulation Function

Our simulation function is where we’ll use libEnsemble’s executor to configure and submit our application for execution.
We’ll poll this task’s state while it runs, and once we’ve detected it has finished we’ll send any results or exit statuses
back to the manager.

Create another Python file named forces_simf.py containing the following for starters:

1 import numpy as np
2

3 # Optional status codes to display in libE_stats.txt for each gen or sim
4 from libensemble.message_numbers import TASK_FAILED, WORKER_DONE
5

6

7 def run_forces(H, persis_info, sim_specs, libE_info):
8 """Runs the forces MPI application"""
9

10 calc_status = 0
11

12 # Parse out num particles, from generator function
13 particles = str(int(H["x"][0][0]))
14

15 # app arguments: num particles, timesteps, also using num particles as seed
16 args = particles + " " + str(10) + " " + particles
17

18 # Retrieve our MPI Executor
19 exctr = libE_info["executor"]
20

21 # Submit our forces app for execution.
22 task = exctr.submit(app_name="forces", app_args=args)
23

24 # Block until the task finishes
25 task.wait()

We retrieve the generated number of particles from H and construct an argument string for our launched application.
The particle count doubles up as a random number seed here.

170 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

We then retrieve our previously instantiated Executor. libEnsemble will use the MPI runner detected (or provided by
platform options). As num_procs (or similar) is not specified, libEnsemble will assign the processors available to
this worker.

After submitting the “forces” app for execution, a Task object is returned that correlates with the launched app. This
object is roughly equivalent to a Python future and can be polled, killed, and evaluated in a variety of helpful ways. For
now, we’re satisfied with waiting for the task to complete via task.wait().

We can assume that afterward, any results are now available to parse. Our application produces a forces.stat file
that contains either energy computations for every timestep or a “kill” message if particles were lost, which indicates a
bad run - this can be ignored for now.

To complete our simulation function, parse the last energy value from the output file into a local output History
array, and if successful, set the simulation function’s exit status calc_status to WORKER_DONE. Otherwise, send
back NAN and a TASK_FAILED status:

27 # Try loading final energy reading, set the sim's status
28 statfile = "forces.stat"
29 try:
30 data = np.loadtxt(statfile)
31 final_energy = data[-1]
32 calc_status = WORKER_DONE
33 except Exception:
34 final_energy = np.nan
35 calc_status = TASK_FAILED
36

37 # Define our output array, populate with energy reading
38 output = np.zeros(1, dtype=sim_specs["out"])
39 output["energy"] = final_energy
40

41 # Return final information to worker, for reporting to manager
42 return output, persis_info, calc_status

calc_status will be displayed in the libE_stats.txt log file.

That’s it! As can be seen, with libEnsemble, it’s relatively easy to get started with launching applications.

Running the example

This completes our calling script and simulation function. Run libEnsemble with:

python run_libe_forces.py --comms local --nworkers [nworkers]

where nworkers is one more than the number of concurrent simulations.

Output files (including forces.stat and files containing stdout and stderr content for each task) should appear in
the current working directory. Overall workflow information should appear in libE_stats.txt and ensemble.log
as usual.

6.2. Tutorials 171

libEnsemble User Manual, Release 1.3.0+dev

Example run / output

For example, after running:

python run_libe_forces.py --comms local --nworkers 3

my libE_stats.txt resembled:

Manager : Starting ensemble at: 2023-09-12 18:12:08.517
Worker 2: sim_id 0: sim Time: 0.205 Start: ... End: ... Status: Completed
Worker 3: sim_id 1: sim Time: 0.284 Start: ... End: ... Status: Completed
Worker 2: sim_id 2: sim Time: 0.117 Start: ... End: ... Status: Completed
Worker 3: sim_id 3: sim Time: 0.294 Start: ... End: ... Status: Completed
Worker 2: sim_id 4: sim Time: 0.124 Start: ... End: ... Status: Completed
Worker 3: sim_id 5: sim Time: 0.174 Start: ... End: ... Status: Completed
Worker 3: sim_id 7: sim Time: 0.135 Start: ... End: ... Status: Completed
Worker 2: sim_id 6: sim Time: 0.275 Start: ... End: ... Status: Completed
Worker 1: Gen no 1: gen Time: 1.038 Start: ... End: ... Status: Persis gen␣
→˓finished
Manager : Exiting ensemble at: 2023-09-12 18:12:09.565 Time Taken: 1.048

where status is set based on the simulation function’s returned calc_status.

My ensemble.log (on a four-core laptop) resembled:

[0] ... libensemble.libE (INFO): Logger initializing: [workerID] precedes each line.␣
→˓[0] = Manager
[0] ... libensemble.libE (INFO): libE version v0.10.2+dev
[0] ... libensemble.manager (INFO): Manager initiated on node shuds
[0] ... libensemble.manager (INFO): Manager exit_criteria: {'sim_max': 8}
[2] ... libensemble.worker (INFO): Worker 2 initiated on node shuds
[3] ... libensemble.worker (INFO): Worker 3 initiated on node shuds
[1] ... libensemble.worker (INFO): Worker 1 initiated on node shuds
[2] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker2_0: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 2023 10 2023
[3] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker3_0: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 2900 10 2900
[2] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker2_0 finished␣
→˓with errcode 0 (FINISHED)
[3] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker3_0 finished␣
→˓with errcode 0 (FINISHED)
[2] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker2_1: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 1288 10 1288
[3] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker3_1: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 2897 10 2897
[2] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker2_1 finished␣
→˓with errcode 0 (FINISHED)
[3] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker3_1 finished␣
→˓with errcode 0 (FINISHED)
[2] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker2_2: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 1623 10 1623
[3] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker3_2: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 1846 10 1846
[2] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker2_2 finished␣

(continues on next page)

172 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

→˓with errcode 0 (FINISHED)
[3] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker3_2 finished␣
→˓with errcode 0 (FINISHED)
[2] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker2_3: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 2655 10 2655
[3] ... libensemble.executors.mpi_executor (INFO): Launching task libe_task_forces_
→˓worker3_3: mpirun -hosts shuds -np 2 --ppn 2 /home/.../forces_app/forces.x 1818 10 1818
[3] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker3_3 finished␣
→˓with errcode 0 (FINISHED)
[2] ... libensemble.executors.executor (INFO): Task libe_task_forces_worker2_3 finished␣
→˓with errcode 0 (FINISHED)
[0] ... libensemble.manager (INFO): Term test tripped: sim_max
[0] ... libensemble.manager (INFO): Term test tripped: sim_max
[0] ... libensemble.libE (INFO): Manager total time: 1.043

Note again that the four cores were divided equally among two workers that run simulations.

That concludes this tutorial. Each of these example files can be found in the repository in exam-
ples/tutorials/forces_with_executor.

For further experimentation, we recommend trying out this libEnsemble tutorial workflow on a cluster or multi-node
system, since libEnsemble can also manage those resources and is developed to coordinate computations at huge scales.
See HPC platform guides for more information.

See the forces_gpu tutorial for a similar workflow including GPUs. That tutorial also shows how to dynamically
assign resources to each simulation.

Please feel free to contact us or open an issue on GitHub if this tutorial workflow doesn’t work properly on your cluster
or other compute resource.

Exercises

These may require additional browsing of the documentation to complete.

1. Adjust submit() to launch with four processes.

2. Adjust submit() again so the app’s stdout and stderr are written to stdout.txt and stderr.txt respec-
tively.

3. Add a fourth argument to the args line to make 20% of simulations go bad.

4. Construct a while not task.finished: loop that periodically sleeps for a tenth of a second, calls task.
poll(), then reads the output .stat file, and calls task.kill() if the output file contains "kill\n" or if
task.runtime exceeds sixty seconds.

Click Here for Solution

Showing updated sections only (--- refers to snips where code is unchanged).

import time

...
args = particles + " " + str(10) + " " + particles + " " + str(0.2)
...

(continues on next page)

6.2. Tutorials 173

https://github.com/Libensemble/libensemble/tree/develop/examples/tutorials/forces_with_executor
https://github.com/Libensemble/libensemble/tree/develop/examples/tutorials/forces_with_executor
https://github.com/Libensemble/libensemble/issues

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

statfile = "forces.stat"
task = exctr.submit(

app_name="forces",
app_args=args,
num_procs=4,
stdout="stdout.txt",
stderr="stderr.txt",

)

while not task.finished:
time.sleep(0.1)
task.poll()

if task.file_exists_in_workdir(statfile):
with open(statfile, "r") as f:

if "kill\n" in f.readlines():
task.kill()

if task.runtime > 60:
task.kill()

...

Running the generator on the manager

As of version 1.3.0, the generator can be run on a thread on the manager, using the libE_specs option
gen_on_manager.

Change the libE_specs as follows.

28 nsim_workers = ensemble.nworkers
29

30 # Persistent gen does not need resources
31 ensemble.libE_specs = LibeSpecs(
32 gen_on_manager=True, sim_dirs_make=True, ensemble_dir_path="./test_

→˓executor_forces_tutorial"
33)

When running set nworkers to the number of workers desired for running simulations. E.g., Instead of:

python run_libe_forces.py --comms local --nworkers 5

use:

python run_libe_forces.py --comms local --nworkers 4

Note that as the generator random number seed will be zero instead of one, the checksum will change.

For more information see Running generator on the manager.

174 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

6.2.3 Executor - Assign GPUs

This tutorial shows the most portable way to assign tasks (user applications) to the GPU. The libEnsemble scripts in
this example are available under forces_gpu in the libEnsemble repository.

This example is based on the simple forces tutorial with a slightly modified simulation function (to assign
GPUs) and a greatly increased number of particles (allows live GPU usage to be viewed).

In the first example, each worker will be using one GPU. The code will assign the GPUs available to each worker, using
the appropriate method. This works on systems using Nvidia, AMD, and Intel GPUs without modifying the scripts.

A video demonstrates running this example on Frontier.

Simulation function

The sim_f (forces_simf.py) is as follows. The lines that are different from the simple forces example are high-
lighted:

1 import numpy as np
2

3 # Optional status codes to display in libE_stats.txt for each gen or sim
4 from libensemble.message_numbers import TASK_FAILED, WORKER_DONE
5

6 # Optional - to print GPU settings
7 from libensemble.tools.test_support import check_gpu_setting
8

9

10 def run_forces(H, persis_info, sim_specs, libE_info):
11 """Launches the forces MPI app and auto-assigns ranks and GPU resources.
12

13 Assigns one MPI rank to each GPU assigned to the worker.
14 """
15

16 calc_status = 0
17

18 # Parse out num particles, from generator function
19 particles = str(int(H["x"][0][0]))
20

21 # app arguments: num particles, timesteps, also using num particles as seed
22 args = particles + " " + str(10) + " " + particles
23

24 # Retrieve our MPI Executor
25 exctr = libE_info["executor"]
26

27 # Submit our forces app for execution.
28 task = exctr.submit(
29 app_name="forces",
30 app_args=args,
31 auto_assign_gpus=True,
32 match_procs_to_gpus=True,
33)
34

35 # Block until the task finishes
36 task.wait()

(continues on next page)

6.2. Tutorials 175

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_gpu
https://youtu.be/H2fmbZ6DnVc

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

37

38 # Optional - prints GPU assignment (method and numbers)
39 check_gpu_setting(task, assert_setting=False, print_setting=True)
40

41 # Try loading final energy reading, set the sim's status
42 statfile = "forces.stat"
43 try:
44 data = np.loadtxt(statfile)
45 final_energy = data[-1]
46 calc_status = WORKER_DONE
47 except Exception:
48 final_energy = np.nan
49 calc_status = TASK_FAILED
50

51 # Define our output array, populate with energy reading
52 output = np.zeros(1, dtype=sim_specs["out"])
53 output["energy"] = final_energy
54

55 # Return final information to worker, for reporting to manager
56 return output, persis_info, calc_status

Lines 31-32 tell the executor to use the GPUs assigned to this worker, and to match processors (MPI ranks) to GPUs.

The user can also set num_procs and num_gpus in the generator as in the forces_gpu_var_resources example, and skip
lines 31-32.

Line 37 simply prints out how the GPUs were assigned. If this is not as expected, platform configuration can be
provided.

While this is sufficient for most users, note that it is possible to query the resources assigned to this worker (nodes and
partitions of nodes), and use this information however you want.

How to query this worker’s resources

The example shown below implements a similar, but less portable, version of the above (excluding output lines).

1 import numpy as np
2

3 # To retrieve our MPI Executor and resources instances
4 from libensemble.executors.executor import Executor
5 from libensemble.resources.resources import Resources
6

7 # Optional status codes to display in libE_stats.txt for each gen or sim
8 from libensemble.message_numbers import WORKER_DONE, TASK_FAILED
9

10

11 def run_forces(H, _, sim_specs):
12 calc_status = 0
13

14 # Parse out num particles, from generator function
15 particles = str(int(H["x"][0][0]))
16

17 # app arguments: num particles, timesteps, also using num particles as seed
(continues on next page)

176 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_gpu_var_resources/run_libe_forces.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

18 args = particles + " " + str(10) + " " + particles
19

20 # Retrieve our MPI Executor instance and resources
21 exctr = Executor.executor
22 resources = Resources.resources.worker_resources
23

24 resources.set_env_to_slots("CUDA_VISIBLE_DEVICES")
25

26 # Submit our forces app for execution. Block until the task starts.
27 task = exctr.submit(
28 app_name="forces",
29 app_args=args,
30 num_nodes=resources.local_node_count,
31 procs_per_node=resources.slot_count,
32 wait_on_start=True,
33)
34

35 # Block until the task finishes
36 task.wait()
37

38 # Stat file to check for bad runs
39 statfile = "forces.stat"
40

41 # Read final energy
42 data = np.loadtxt(statfile)
43 final_energy = data[-1]
44

45 # Define our output array, populate with energy reading
46 output = np.zeros(1, dtype=sim_specs["out"])
47 output["energy"][0] = final_energy
48

49

50 return output

The above code will assign a GPU to each worker on CUDA-capable systems, so long as the number of workers is
chosen to fit the resources.

If you want to have one rank with multiple GPUs, then change source lines 30/31 accordingly.

The resource attributes used are:

• local_node_count: The number of nodes available to this worker

• slot_count: The number of slots per node for this worker

and the line:

resources.set_env_to_slots("CUDA_VISIBLE_DEVICES")

will set the environment variable CUDA_VISIBLE_DEVICES to match the assigned slots (partitions on the node).

Note: slots refers to the resource sets enumerated on a node (starting with zero). If a resource set has more than
one node, then each node is considered to have slot zero. [diagram]

Note that if you are on a system that automatically assigns free GPUs on the node, then setting

6.2. Tutorials 177

libEnsemble User Manual, Release 1.3.0+dev

CUDA_VISIBLE_DEVICES is not necessary unless you want to ensure workers are strictly bound to GPUs. For ex-
ample, on many SLURM systems, you can use --gpus-per-task=1 (e.g., Perlmutter). Such options can be added
to the exctr.submit call as extra_args:

task = exctr.submit(
...

extra_args="--gpus-per-task=1"
)

Alternative environment variables can be simply substituted in set_env_to_slots. (e.g., HIP_VISIBLE_DEVICES,
ROCR_VISIBLE_DEVICES).

Note: On some systems CUDA_VISIBLE_DEVICES may be overridden by other assignments such as
--gpus-per-task=1

Compiling the Forces application

First, compile the forces application under the forces_app directory.

Compile forces.x using one of the GPU build lines in build_forces.sh or similar for your platform.

Running the example

As an example, if you have been allocated two nodes, each with four GPUs, then assign nine workers (the extra worker
runs the persistent generator).

For example:

python run_libe_forces.py --comms local --nworkers 9

See zero-resource workers for more ways to express this.

Changing the number of GPUs per worker

If you want to have two GPUs per worker on the same system (with four GPUs per node), you could assign only four
workers. You will see that two GPUs are used for each forces run.

Varying resources

A variant of this example where you may specify any number of processors and GPUs for each simulation is given in
the forces_gpu_var_resources example.

In this example, when simulations are parameterized in the generator function, the gen_specs["out"] field num_gpus
is set for each simulation (based on the number of particles). These values will automatically be used for each simulation
(they do not need to be passed as a sim_specs["in"]).

Further guidance on varying the resources assigned to workers can be found under the resource manager section.

178 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_app/build_forces.sh
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_gpu_var_resources/run_libe_forces.py

libEnsemble User Manual, Release 1.3.0+dev

Multiple applications

Another variant of this example, forces_multi_app, has two applications, one that uses GPUs, and another that only
uses CPUs. Dynamic resource management can manage both types of resources and assign these to the same nodes
concurrently, for maximum efficiency.

Checking GPU usage

The output of forces.x will say if it has run on the host or device. When running libEnsemble, this can be found in the
simulation directories (under the ensemble directory).

You can check you are running forces on the GPUs as expected by using profiling tools and/or by using a monitoring
utility. For NVIDIA GPUs, for example, the Nsight profiler is generally available and can be run from the command
line. To simply run forces.x stand-alone you could run:

nsys profile --stats=true mpirun -n 2 ./forces.x

To use the nvidia-smi monitoring tool while running, open another shell where your code is running (this may entail
using ssh to get on to the node), and run:

watch -n 0.1 nvidia-smi

This will update GPU usage information every 0.1 seconds. You would need to ensure the code runs for long enough
to register on the monitor, so let’s try 100,000 particles:

mpirun -n 2 ./forces.x 100000

It is also recommended that you run without the profiler when using the nvidia-smi utility.

This can also be used when running via libEnsemble, so long as you are on the node where the forces applications are
being run.

Alternative monitoring devices include rocm-smi (AMD) and intel_gpu_top (Intel). The latter does not need the
watch command.

Example submission script

A simple example batch script for Perlmutter that runs 8 workers on 2 nodes:

1 #!/bin/bash
2 #SBATCH -J libE_small_test
3 #SBATCH -A <myproject>
4 #SBATCH -C gpu
5 #SBATCH --time 10
6 #SBATCH --nodes 2
7

8 export MPICH_GPU_SUPPORT_ENABLED=1
9 export SLURM_EXACT=1

10

11 python run_libe_forces.py --comms local --nworkers 9

where SLURM_EXACT is set to help prevent resource conflicts on each node.

6.2. Tutorials 179

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/scaling_tests/forces/forces_multi_app/run_libe_forces.py

libEnsemble User Manual, Release 1.3.0+dev

6.2.4 Optimization with APOSMM

This tutorial demonstrates libEnsemble’s capability to identify multiple minima of simulation output using the built-
in APOSMM (Asynchronously Parallel Optimization Solver for finding Multiple Minima) gen_f. In this tutorial, we’ll
create a simple simulation sim_f that defines a function with multiple minima, then write a libEnsemble calling script
that imports APOSMM and parameterizes it to check for minima over a domain of outputs from our sim_f.

Six-Hump Camel Simulation Function

Describing APOSMM’s operations is simpler with a given function on which to depict evaluations. We’ll use the
Six-Hump Camel function, known to have six global minima. A sample space of this function, containing all minima,
appears below:

Create a new Python file named six_hump_camel.py. This will be our sim_f, incorporating the above function.
Write the following:

1 import numpy as np
2

3

4 def six_hump_camel(H, _, sim_specs):
5 """Six-Hump Camel sim_f."""
6

7 batch = len(H["x"]) # Num evaluations each sim_f call.
8 H_o = np.zeros(batch, dtype=sim_specs["out"]) # Define output array H
9

10 for i, x in enumerate(H["x"]):
11 H_o["f"][i] = three_hump_camel_func(x) # Function evaluations placed into H
12

13 return H_o
(continues on next page)

180 Chapter 6. Appendices

https://www.sfu.ca/~ssurjano/camel6.html

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

14

15

16 def six_hump_camel_func(x):
17 """Six-Hump Camel function definition"""
18 x1 = x[0]
19 x2 = x[1]
20 term1 = (4 - 2.1 * x1**2 + (x1**4) / 3) * x1**2
21 term2 = x1 * x2
22 term3 = (-4 + 4 * x2**2) * x2**2
23

24 return term1 + term2 + term3

APOSMM Operations

APOSMM coordinates multiple local optimization runs starting from a collection of sample points. These local op-
timization runs occur concurrently, and can incorporate a variety of optimization methods, including from NLopt,
PETSc/TAO, SciPy, or other external scripts.

Before APOSMM can start local optimization runs, some number of uniformly sampled points must be evaluated (if
no prior simulation evaluations are provided). User-requested sample points can also be provided to APOSMM:

Specifically, APOSMM will begin local optimization runs from evaluated points that don’t have points with smaller
function values nearby (within a threshold r_k). For the above example, after APOSMM receives the evaluations of
the uniformly sampled points, it will begin at most max_active_runs local optimization runs.

As function values are returned to APOSMM, APOSMM gives them to each local optimization run in order to generate
the next point(s); these are returned to the manager to be evaluated by the simulation routine. As runs complete (a
minimum is found, or some termination criteria for the local optimization run is satisfied), additional local optimization

6.2. Tutorials 181

https://nlopt.readthedocs.io/en/latest/
https://www.mcs.anl.gov/petsc/
https://scipy.org/

libEnsemble User Manual, Release 1.3.0+dev

runs may be started or additional uniformly sampled points may be evaluated. This continues until a STOP_TAG is sent
by the manager, for example when the budget of simulation evaluations has been exhausted, or when a sufficiently
“good” simulation output has been observed.

Throughout, generated and evaluated points are appended to the History array, with the field "local_pt" being
True if the point is part of a local optimization run, and "local_min" being True if the point has been ruled a local
minimum.

APOSMM Persistence

The most recent version of APOSMM included with libEnsemble is referred to as Persistent APOSMM. Unlike most
other user functions that are initiated and completed by workers multiple times based on allocation, a single worker
process initiates APOSMM so that it “persists” and keeps running over the course of the entire libEnsemble routine.
APOSMM begins its own parallel evaluations and communicates points back and forth with the manager, which are
then given to workers and evaluated by simulation routines.

In practice, since a single worker becomes “persistent” for APOSMM, users must ensure that enough workers or MPI
ranks are initiated to support libEnsemble’s manager, a persistent worker to run APOSMM, and simulation routines.
The following:

mpiexec -n 3 python my_aposmm_routine.py

results in only one worker process available to perform simulation routines.

182 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

Calling Script

Create a new Python file named my_first_aposmm.py. Start by importing NumPy, libEnsemble routines, APOSMM,
our sim_f, and a specialized allocation function:

1 import numpy as np
2

3 from six_hump_camel import six_hump_camel
4

5 from libensemble.libE import libE
6 from libensemble.gen_funcs.persistent_aposmm import aposmm
7 from libensemble.alloc_funcs.persistent_aposmm_alloc import persistent_aposmm_alloc
8 from libensemble.tools import parse_args, add_unique_random_streams

This allocation function starts a single Persistent APOSMM routine and provides sim_f output for points requested by
APOSMM. Points can be sampled points or points from local optimization runs.

APOSMM supports a wide variety of external optimizers. The following statements set optimizer settings to "scipy"
to indicate to APOSMM which optimization method to use, and help prevent unnecessary imports or package installa-
tions:

1 import libensemble.gen_funcs
2

3 libensemble.gen_funcs.rc.aposmm_optimizers = "scipy"

Set up parse_args(), our sim_specs, gen_specs, and alloc_specs:

1 nworkers, is_manager, libE_specs, _ = parse_args()
2

3 sim_specs = {
4 "sim_f": six_hump_camel, # Simulation function
5 "in": ["x"], # Accepts "x" values
6 "out": [("f", float)], # Returns f(x) values
7 }
8

9 gen_out = [
10 ("x", float, 2), # Produces "x" values
11 ("x_on_cube", float, 2), # "x" values scaled to unit cube
12 ("sim_id", int), # Produces sim_id's for History array indexing
13 ("local_min", bool), # Is a point a local minimum?
14 ("local_pt", bool), # Is a point from a local opt run?
15]
16

17 gen_specs = {
18 "gen_f": aposmm, # APOSMM generator function
19 "persis_in": ["f"] + [n[0] for n in gen_out],
20 "out": gen_out, # Output defined like above dict
21 "user": {
22 "initial_sample_size": 100, # Random sample 100 points to start
23 "localopt_method": "scipy_Nelder-Mead",
24 "opt_return_codes": [0], # Status integers specific to localopt_method
25 "max_active_runs": 6, # Occur in parallel
26 "lb": np.array([-2, -1]), # Lower bound of search domain
27 "ub": np.array([2, 1]), # Upper bound of search domain

(continues on next page)

6.2. Tutorials 183

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

28 },
29 }
30

31 alloc_specs = {"alloc_f": persistent_aposmm_alloc}

gen_specs["user"] fields above that are required for APOSMM are:

• "lb" - Search domain lower bound

• "ub" - Search domain upper bound

• "localopt_method" - Chosen local optimization method

• "initial_sample_size" - Number of uniformly sampled points generated before local optimization runs.

• "opt_return_codes" - A list of integers that local optimization methods return when a minimum is detected.
SciPy’s Nelder-Mead returns 0, but other methods (not used in this tutorial) return 1.

Also note the following:

• gen_specs["in"] is empty. For other gen_f’s this defines what fields to give to the gen_f when called, but
here APOSMM’s alloc_f defines those fields.

• "x_on_cube" in gen_specs["out"]. APOSMM works internally on "x" values scaled to the unit cube. To
avoid back-and-forth scaling issues, both types of "x"’s are communicated back, even though the simulation
will likely use "x" values. (APOSMM performs handshake to ensure that the x_on_cube that was given to be
evaluated is the same the one that is given back.)

• "sim_id" in gen_specs["out"]. APOSMM produces points in its local History array that it will need to
update later, and can best reference those points (and avoid a search) if APOSMM produces the IDs itself, instead
of libEnsemble.

Other options and configurations for APOSMM can be found in the APOSMM API reference.

Set exit_criteria so libEnsemble knows when to complete, and persis_info for random sampling seeding:

1 exit_criteria = {"sim_max": 2000}
2 persis_info = add_unique_random_streams({}, nworkers + 1)

Finally, add statements to initiate libEnsemble, and quickly check calculated minima:

1 if __name__ == "__main__": # required by multiprocessing on macOS and windows
2 H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, alloc_

→˓specs, libE_specs)
3

4 if is_manager:
5 print("Minima:", H[np.where(H["local_min"])]["x"])

184 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

Final Setup, Run, and Output

If you haven’t already, install SciPy so APOSMM can access the required optimization method:

pip install scipy

Finally, run this libEnsemble / APOSMM optimization routine with the following:

python my_first_aposmm.py --comms local --nworkers 4

Please note that one worker will be “persistent” for APOSMM for the duration of the routine.

After a couple seconds, the output should resemble the following:

[0] libensemble.libE (MANAGER_WARNING):

User generator script will be creating sim_id.
Take care to do this sequentially.
Also, any information given back for existing sim_id values will be overwritten!
So everything in gen_specs["out"] should be in gen_specs["in"]!

Minima: [[0.08993295 -0.71265804]
[1.70360676 -0.79614982]
[-1.70368421 0.79606073]
[-0.08988064 0.71270945]
[-1.60699361 -0.56859108]
[1.60713962 0.56869567]]

The first section labeled MANAGER_WARNING is a default libEnsemble warning for generator functions that create
sim_id’s, like APOSMM. It does not indicate a failure.

The local minima for the Six-Hump Camel simulation function as evaluated by APOSMM with libEnsemble should
be listed directly below the warning.

Please see the API reference here for more APOSMM configuration options and other information.

Each of these example files can be found in the repository in examples/tutorials/aposmm.

6.2. Tutorials 185

https://github.com/Libensemble/libensemble/tree/develop/examples/tutorials

libEnsemble User Manual, Release 1.3.0+dev

Applications

APOSMM is not limited to evaluating minima from pure Python simulation functions. Many common libEnsemble use-
cases involve using libEnsemble’s MPI Executor to launch user applications with parameters requested by APOSMM,
then evaluate their output using APOSMM, and repeat until minima are identified. A currently supported example can
be found in libEnsemble’s WarpX Scaling Test.

6.2.5 Calibration with Simulation Cancellation

Introduction - Calibration with libEnsemble and a Regression Model

This tutorial demonstrates libEnsemble’s capability to selectively cancel pending simulations based on instructions
from a calibration Generator Function. This capability is desirable, especially when evaluations are expensive, since
compute resources may then be more effectively applied toward critical evaluations.

For a somewhat different approach than libEnsemble’s other tutorials, we’ll emphasize the settings, functions, and
data fields within the calling script, persistent generator, manager, and sim_f that make this capability possible,
rather than outlining a step-by-step process.

The libEnsemble regression test test_persistent_surmise_calib.py demonstrates cancellation of pending sim-
ulations, while the test_persistent_surmise_killsims.py test demonstrates libEnsemble’s capability to also
kill running simulations that have been marked as cancelled.

Overview of the Calibration Problem

The generator function featured in this tutorial can be found in gen_funcs/persistent_surmise_calib.py and
uses the surmise library for its calibration surrogate model interface. The surmise library uses the “PCGPwM” emula-
tion method in this example.

Say there is a computer model 𝑓(𝜃, 𝑥) to be calibrated. To calibrate is to find some parameter 𝜃0 such that 𝑓(𝜃0, 𝑥)
closely resembles data collected from a physical experiment. For example, a (simple) physical experiment may involve
dropping a ball at different heights to study the gravitational constant, and the corresponding computer model could
be the set of differential equations that govern the drop. In a case where the computation of the computer model is
relatively expensive, we employ a fast surrogate model to approximate the model and to inform good parameters to test
next. Here the computer model 𝑓(𝜃, 𝑥) is accessible only through performing sim_f evaluations.

As a convenience for testing, the observed data values are modelled by calling the sim_f for the known true theta,
which in this case is the center of a unit hypercube. These values are therefore stored at the start of libEnsemble’s main
History array array, and have associated sim_id’s.

The generator function gen_f then samples an initial batch of parameters (𝜃1, . . . , 𝜃𝑛) and constructs a surrogate
model.

For illustration, the initial batch of evaluations are arranged in the following sense:

f =

⎛⎜⎝𝑓(𝜃1)
T

...
𝑓(𝜃𝑛)

T

⎞⎟⎠ =

⎛⎜⎝𝑓(𝜃1, 𝑥1) . . . 𝑓(𝜃1, 𝑥𝑚)
...

. . .
...

𝑓(𝜃𝑛, 𝑥1) . . . 𝑓(𝜃𝑛, 𝑥𝑚)

⎞⎟⎠ .

The surrogate then generates (suggests) new parameters for sim_f evaluations, so the number of parameters 𝑛 grows
as more evaluations are scheduled and performed. As more evaluations are performed and received by gen_f, the
surrogate evolves and suggests parameters closer to 𝜃0 with uncertainty estimates. The calibration can be terminated
when either gen_f determines it has found 𝜃0 with some tolerance in the surrounding uncertainty, or computational
resource runs out. At termination, the generator exits and returns, initiating the shutdown of the libEnsemble routine.

186 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/tree/main/libensemble/tests/scaling_tests/warpx
https://github.com/mosesyhc/surmise

libEnsemble User Manual, Release 1.3.0+dev

The following is a pseudocode overview of the generator. Functions directly from the calibration library used within
the generator function have the calib: prefix. Helper functions defined to improve the data received by the calibration
library by interfacing with libEnsemble have the libE: prefix. All other statements are workflow logic or persistent
generator helper functions like send or receive:

1 libE: calculate observation values and first batch
2 while STOP_signal not received:
3 receive: evaluated points
4 unpack points into 2D Theta x Point structures
5 if new model condition:
6 calib: construct new model
7 else:
8 wait to receive more points
9 if some condition:
10 calib: generate new thetas from model
11 calib: if error threshold reached:
12 exit loop - done
13 send: new points to be evaluated
14 if any sent points must be obviated:
15 libE: mark points with cancel request
16 send: points with cancel request

Point Cancellation Requests and Dedicated Fields

While the generator loops and updates the model based on returned points from simulations, it detects conditionally if
any new Thetas should be generated from the model, simultaneously evaluating if any pending simulations ought to be
cancelled (“obviated”). If so, the generator then calls cancel_columns():

if select_condition(pending):
new_theta, info = select_next_theta(step_add_theta, cal, emu, pending, n_explore_

→˓theta)
...
c_obviate = info["obviatesugg"] # suggested
if len(c_obviate) > 0:

cancel_columns(obs_offset, c_obviate, n_x, pending, ps)

obs_offset is an offset that excludes the observations when mapping points in surmise data structures to sim_id’s,
c_obviate is a selection of columns to cancel, n_x is the number of x values, and pending is used to check that
points marked for cancellation have not already returned. ps is the instantiation of the PersistentSupport class that is
set up for persistent generators, and provides an interface for communication with the manager.

Within cancel_columns(), each column in c_obviate is iterated over, and if a point is pending and thus has not yet
been evaluated by a simulation, its sim_id is appended to a list to be sent to the Manager for cancellation. Cancellation
is requested using the helper function request_cancel_sim_ids provided by the PersistentSupport class. Each of
these helper functions is described here. The entire cancel_columns() routine is listed below:

def cancel_columns(obs_offset, c, n_x, pending, ps):
"""Cancel columns"""
sim_ids_to_cancel = []
columns = np.unique(c)
for c in columns:

col_offset = c * n_x
for i in range(n_x):

(continues on next page)

6.2. Tutorials 187

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

sim_id_cancel = obs_offset + col_offset + i
if pending[i, c]:

sim_ids_to_cancel.append(sim_id_cancel)
pending[i, c] = 0

ps.request_cancel_sim_ids(sim_ids_to_cancel)

In future calls to the allocation function by the manager, points that would have been distributed for simulation work
but are now marked with “cancel_requested” will not be processed. The manager will send kill signals to workers that
are already processing cancelled points. These signals can be caught and acted on by the user sim_f; otherwise they
will be ignored.

Allocation Function and Cancellation Configuration

The allocation function used in this example is the only_persistent_gens function in the start_only_persistent module.
The calling script passes the following specifications:

libE_specs["kill_canceled_sims"] = True

alloc_specs = {
"alloc_f": alloc_f,
"user": {

"init_sample_size": init_sample_size,
"async_return": True,
"active_recv_gen": True,

},
}

async_return tells the allocation function to return results to the generator as soon as they come back from evaluation
(once the initial sample is complete).

init_sample_size gives the size of the initial sample that is batch returned to the gen. This is calculated from other
parameters in the calling script.

active_recv_gen allows the persistent generator to handle irregular communications (see below).

By default, workers (including persistent workers), are only allocated work when they’re in an idle or non-active
state. However, since this generator must asynchronously update its model, the worker running this generator remains
in an active receive state, until it becomes non-persistent. This means both the manager and persistent worker (generator
in this case) must be prepared for irregular sending/receiving of data.

Calling Script - Reading Results

Within the libEnsemble calling script, once the main libE() function call has returned, it’s a simple enough process
to view the History rows that were marked as cancelled:

if __name__ == "__main__": # required by multiprocessing on macOS and windows
H, persis_info, flag = libE(sim_specs, gen_specs,

exit_criteria, persis_info,
alloc_specs=alloc_specs,
libE_specs=libE_specs)

(continues on next page)

188 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

if is_manager:
print("Cancelled sims", H["cancel_requested"])

Here’s an example graph showing the relationship between scheduled, cancelled (obviated), failed, and completed
simulations requested by the gen_f. Notice that for each batch of scheduled simulations, most either complete or fail
but the rest are successfully obviated:

Please see the test_persistent_surmise_calib.py regression test for an example routine using the surmise
calibration generator. The associated simulation function and allocation function are included in sim_funcs/
surmise_test_function.py and alloc_funcs/start_only_persistent.py respectively.

6.2. Tutorials 189

libEnsemble User Manual, Release 1.3.0+dev

Using cancellations to kill running simulations

If a generated point is cancelled by the generator before it has been given to a worker for evaluation, then it will never
be given. If it has already returned from the simulation, then results can be returned, but the cancel_requested
field remains as True. However, if the simulation is running when the manager receives the cancellation request, a kill
signal will be sent to the worker. This can be caught and acted upon by a user function, otherwise it will be ignored.
To demonstrate this, the test test_persistent_surmise_killsims.py captures and processes this signal from the
manager.

In order to do this, a compiled version of the borehole function is launched by sim_funcs/borehole_kills.py via
the Executor. As the borehole application used here is serial, we use the Executor base class rather than the
commonly used MPIExecutor class. The base Executor submit routine simply sub-processes a serial application in-
place. After the initial sample batch of evaluations has been processed, an artificial delay is added to the sub-processed
borehole to allow time to receive the kill signal and terminate the application. Killed simulations will be reported at
the end of the test. As this is dependent on timing, the number of killed simulations will vary between runs. This test
is added simply to demonstrate the killing of running simulations and thus uses a reduced number of evaluations.

6.3 Frequently Asked Questions

If you have any additional questions, feel free to contact us through Support.

6.3.1 Debugging

We recommend using the following options to help debug workflows:

from libensemble import logger
logger.set_level("DEBUG")
libE_specs["safe_mode"] = True

6.3.2 Common Errors

“Manager only - must be at least one worker (2 MPI tasks)” when running with multiprocessing and
multiple workers specified.

If your code was recently switched from MPI to multiprocessing, make sure that libE_specs is populated with
"comms": "local" and "nworkers": [int].

“AssertionError: alloc_f did not return any work, although all workers are idle.”

This error occurs when the manager is waiting although all workers are idle. Note that a worker can be in a persistent
state but is marked as idle when it has returned data to the manager and is ready to receive work.

Some possible causes of this error are:

• An MPI libEnsemble run was initiated with only one process, resulting in one manager but no workers. Similarly,
the error may arise when running with only two processes when using a persistent generator. The generator will
occupy one worker, leaving none to run simulation functions.

• An error in the allocation function. For example, perhaps the allocation waiting for all requested evaluations
to be returned (e.g., before starting a new generator), but this condition is not returning True even though all
scheduled evaluations have returned. This can be due to incorrect implementation (e.g., it has not considered

190 Chapter 6. Appendices

https://libensemble.readthedocs.io/en/main/introduction.html#resources

libEnsemble User Manual, Release 1.3.0+dev

points that are cancelled or paused or in some other state that prevents the allocation function from sending them
out to workers).

• A persistent worker (usually a generator) has sent a message back to the manager but is still performing work
and may return further points. In this case, consider starting the generator in active_recv mode. This can be
specified in the allocation function and will cause the worker to maintain its active status.

• A persistent worker has requested resources that prevents any simulations from taking place. By default, persis-
tent workers hold onto resources even when not active. This may require the worker to return from persistent
mode.

• When returning points to a persistent generator (often the top code block in allocation functions). For example,
support.avail_worker_ids(persistent=EVAL_GEN_TAG) Make sure that the EVAL_GEN_TAG is specified
and not just persistent=True.

libensemble.history (MANAGER_WARNING): Giving entries in H0 back to gen. Marking entries in H0
as ‘gen_informed’ if ‘sim_ended’.

This warning is harmless. It’s saying that as the provided History array is being “reloaded” into the generator, the copy
is being slightly modified.

I keep getting: “Not enough processors per worker to honor arguments.” when using the Executor.
Can I submit tasks to allocated processors anyway?

You may have set enforce_worker_core_bounds to True when setting up the Executor. Also, the resource manager can
be completely disabled with:

libE_specs["disable_resource_manager"] = True

Note that the Executor submit() method has a parameter hyperthreads which will attempt to use all hyper-
threads/SMT threads available if set to True.

FileExistsError: [Errno 17] File exists: “./ensemble”

This can happen when libEnsemble tries to create ensemble or simulation directories that already exist from pre-
vious runs. To avoid this, ensure the ensemble directory paths are unique by appending some unique value
to libE_specs["ensemble_dir_path"], or automatically instruct runs to operate in unique directories via
libE_specs["use_workflow_dir"] = True.

PETSc and MPI errors with “[unset]: write_line error; fd=-1 buf=:cmd=abort exitcode=59”

with python [test with PETSc].py --comms local --nworkers 4

This error occurs on some platforms when using PETSc with libEnsemble in local (multiprocessing) mode. We
believe this is due to PETSc initializing MPI before libEnsemble forks processes using multiprocessing. The recom-
mended solution is running libEnsemble in MPI mode. An alternative solution may be using a serial build of PETSc.

Note: This error may depend on how multiprocessing handles an existing MPI communicator in a particular platform.

6.3. Frequently Asked Questions 191

libEnsemble User Manual, Release 1.3.0+dev

“UserWarning: Pydantic serializer warnings:Unexpected extra items present in tuple

This warning happens with Pydantic 2.6.0. Upgrading to the latest version (2.6.1+) should remove the warning.

6.3.3 HPC Errors and Questions

Why does libEnsemble hang on certain systems when running with MPI?

Another symptom may be the manager only communicating with Worker 1. This issue may occur if matching probes,
which mpi4py uses by default, are not supported by the communications fabric, like Intel’s Truescale (TMI) fabric.
This can be solved by switching fabrics or disabling matching probes before the MPI module is first imported.

Add these two lines BEFORE from mpi4py import MPI:

import mpi4py
mpi4py.rc.recv_mprobe = False

Also see https://software.intel.com/en-us/articles/python-mpi4py-on-intel-true-scale-and-omni-path-clusters.

can’t open hfi unit: -1 (err=23) - [13] MPI startup(): tmi fabric is not available and fallback fabric is
not enabled

This may occur on TMI when libEnsemble Python processes have been launched to a node and these, in turn, execute
tasks on the node; creating too many processes for the available contexts. Note that while processes can share contexts,
the system is confused by the fact that there are two phases: first libEnsemble processes and then subprocesses to run
user tasks. The solution is to either reduce the number of processes running or to specify a fallback fabric through
environment variables:

unset I_MPI_FABRICS
export I_MPI_FABRICS_LIST=tmi,tcp
export I_MPI_FALLBACK=1

Alternatively, libEnsemble can be run in central mode where all workers run on dedicated nodes while launching all
tasks onto other nodes. To do this add a node for libEnsemble, and add libE_specs["dedicated_mode"] = True
to your calling script.

What does “_pickle.UnpicklingError: invalid load key, “x00”.” indicate?

This has been observed with the OFA fabric when using mpi4py and usually indicates MPI messages aren’t being
received correctly. The solution is to either switch fabric or turn off matching probes. See the answer to “Why does
libEnsemble hang on certain systems when running with MPI?”

For more information see https://bitbucket.org/mpi4py/mpi4py/issues/102/unpicklingerror-on-commrecv-after-iprobe.

192 Chapter 6. Appendices

https://software.intel.com/en-us/articles/python-mpi4py-on-intel-true-scale-and-omni-path-clusters
https://bitbucket.org/mpi4py/mpi4py/issues/102/unpicklingerror-on-commrecv-after-iprobe

libEnsemble User Manual, Release 1.3.0+dev

srun: Job ****** step creation temporarily disabled, retrying (Requested nodes are busy)

Note that this message has been observed on Perlmutter when none of the problems below are present, and is likely
caused by interference with system processes that run between tasks. In this case, it may cause overhead but does not
prevent correct functioning.

When running on a SLURM system, this implies that you are trying to run on a resource that is already dedicated to
another task. The reason can vary, some reasons are:

• All the contexts are in use. This has occurred when using TMI fabric on clusters. See question can’t open hfi
unit: -1 (err=23) for more info.

• All the memory is assigned to the first job-step (srun application), due to a default exclusive mode scheduling
policy. This has been observed on Perlmutter and SDF.

In some cases using these environment variables will stop the issue:

export SLURM_EXACT=1
export SLURM_MEM_PER_NODE=0

Alternatively, this can be resolved by limiting the memory and other resources given to each task using the
--exact option to srun along with other relevant options. For example:

srun --exact -n 4 -c 1 --mem-per-cpu=4G

would ensure that one CPU and 4 Gigabytes of memory are assigned to each MPI process. The amount of
memory should be determined by the memory on the node divided by the number of CPUs. In the executor, this
can be expressed via the extra_args option.

If libEnsemble is sharing nodes with submitted tasks (user applications launched by workers), then you may need
to do this for your launch of libEnsemble also, ensuring there are enough resources for both the libEnsemble
manager and workers and the launched tasks. If this is complicated, we recommended using a dedicated node
for libEnsemble.

6.3.4 libEnsemble Help

How can I debug specific libEnsemble processes?

This is most easily addressed when running libEnsemble locally. Try

mpiexec -np [num processes] xterm -e "python [calling script].py"

to launch an xterm terminal window specific to each process. Mac users will need to install xQuartz.

If running in local mode, try using one of the ForkablePdb routines in libensemble.tools to set breakpoints and
debug similarly to pdb. How well this works varies by system.

from libensemble.tools import ForkablePdb
ForkablePdb().set_trace()

6.3. Frequently Asked Questions 193

https://docs.nersc.gov/systems/perlmutter
https://sdf.slac.stanford.edu/public/doc/#/?id=what-is-the-sdf
https://docs.nersc.gov/systems/perlmutter/running-jobs/#single-gpu-tasks-in-parallel
https://www.xquartz.org/

libEnsemble User Manual, Release 1.3.0+dev

Can I use the MPI Executor when running libEnsemble with multiprocessing?

Yes. The Executor type determines only how libEnsemble workers execute and interact with user applications and is
independent of comms chosen for manager/worker communications.

How can I disable libEnsemble’s output files?

Set libE_specs["disable_log_files"] to True.

If libEnsemble aborts on an exception, the History array and persis_info dictionaries will be dumped. This can be
suppressed by setting libE_specs["save_H_and_persis_on_abort"] to False.

See here for more information about these files.

How can I silence libEnsemble or prevent printed warnings?

Some logger messages at or above the MANAGER_WARNING level are mirrored to stderr automatically. To disable this,
set the minimum stderr displaying level to CRITICAL via the following:

from libensemble import logger
logger.set_stderr_level("CRITICAL")

This effectively puts libEnsemble in silent mode.

See the Logger Configuration docs for more information.

6.3.5 macOS and Windows Errors

Can I run libEnsemble on Windows?

Although we have run many libEnsemble workflows successfully on Windows using both MPI and local comms, Win-
dows is not rigorously supported. We highly recommend Unix-like systems. Windows tends to produce more platform-
specific issues that are difficult to reproduce and troubleshoot.

Windows - How can I run libEnsemble with MPI comms?

We have run Windows workflows with MPI comms. However, as most MPI distributions have either dropped Windows
support (MPICH and Open MPI) or are no longer being maintained (msmpi), we cannot guarantee success.

We recommend experimenting with the many Unix-like emulators, containers, virtual machines, and other such sys-
tems. The Installing PETSc On Microsoft Windows documentation contains valuable information.

Otherwise, install msmpi and mpi4py from conda and experiment, or use local comms.

194 Chapter 6. Appendices

https://petsc.org/release/install/windows/#recommended-installation-methods

libEnsemble User Manual, Release 1.3.0+dev

Windows - “A required privilege is not held by the client”

Assuming you were trying to use the sim_dir_symlink_files or gen_dir_symlink_files options, this indicates
that to allow libEnsemble to create symlinks, you need to run your current cmd shell as administrator.

“RuntimeError: An attempt has been made to start a new process. . . this probably means that you are not using
fork. . . “ if __name__ == “__main__”: freeze_support() . . .

You need to place your main entry point code underneath an if __name__ == "__main__": block.

Explanation: Python chooses one of three methods to start new processes when using multiprocessing (--comms
local with libEnsemble). These are "fork", "spawn", and "forkserver". "fork" is the default on Unix, and
in our experience is quicker and more reliable, but "spawn" is the default on Windows and macOS (See the Python
multiprocessing docs).

Prior to libEnsemble v0.9.2, if libEnsemble detected macOS, it would automatically switch the multiprocessing method
to "fork". We decided to stop doing this to avoid overriding defaults and compatibility issues with some libraries.

If you’d prefer to use "fork" or not reformat your code, you can set the multiprocessing start method by placing the
following near the top of your calling script:

import multiprocessing
multiprocessing.set_start_method("fork", force=True)

“macOS - Fatal error in MPI_Init_thread: Other MPI error, error stack: . . . gethostbyname failed”

Resolve this by appending 127.0.0.1 [your hostname] to /etc/hosts. Unfortunately, 127.0.0.1 localhost isn’t
satisfactory for preventing this.

macOS - How do I stop the Firewall Security popups when running with the Executor?

There are several ways to address this nuisance, but all involve trial and error. An easy (but insecure) solution is
temporarily disabling the firewall through System Preferences -> Security & Privacy -> Firewall -> Turn Off Firewall.
Alternatively, adding a firewall “Allow incoming connections” rule can be attempted for the offending executable.
We’ve had limited success running sudo codesign --force --deep --sign - /path/to/application.app
on our executables, then confirming the next alerts for the executable and mpiexec.hydra.

6.4 Known Issues

The following selection describes known bugs, errors, or other difficulties that may occur when using libEnsemble.

• Platforms using SLURM version 23.02 experience a pickle error when using mpi4py comms. Disabling
matching probes via the environment variable export MPI4PY_RC_RECV_MPROBE=0 or adding mpi4py.rc.
recv_mprobe = False at the top of the calling script should resolve this error. If using the MPI executor and
multiple workers per node, some users may experience failed applications with the message srun: error:
CPU binding outside of job step allocation, allocated in the application’s standard error. This is
being investigated. If this happens we recommend using local comms in place of mpi4py.

• When using the Executor: Open-MPI does not work with direct MPI task submissions in mpi4py comms mode,
since Open-MPI does not support nested MPI executions. Use either local mode or the Balsam Executor
instead.

• Local comms mode (multiprocessing) may fail if MPI is initialized before forking processors. This is thought to
be responsible for issues combining multiprocessing with PETSc on some platforms.

6.4. Known Issues 195

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.nersc.gov/development/languages/python/using-python-perlmutter/#missing-support-for-matched-proberecv

libEnsemble User Manual, Release 1.3.0+dev

• Remote detection of logical cores via LSB_HOSTS (e.g., Summit) returns the number of physical cores as SMT
info not available.

• TCP mode does not support (1) more than one libEnsemble call in a given script or (2) the auto-resources option
to the Executor.

• libEnsemble may hang on systems with matching probes not enabled on the native fabric, like on Intel’s Truescale
(TMI) fabric for instance. See the FAQ for more information.

• We currently recommended running in Central mode on Bridges as distributed runs are experiencing hangs.

6.5 Example User Functions and Calling Scripts

Here we give example generation, simulation, and allocation functions for libEnsemble, as well as example calling
scripts.

Additional examples from libEnsemble’s users are available in the libEnsemble Community Repository, with corre-
sponding generator documentation available here.

6.5.1 Generator Functions

Example Compatible Packages

libEnsemble and the Community Examples repository include example generator functions for the following libraries:

• APOSMM Asynchronously parallel optimization solver for finding multiple minima. Supported local optimiza-
tion routines include:

– DFO-LS Derivative-free solver for (bound constrained) nonlinear least-squares minimization

– NLopt Library for nonlinear optimization, providing a common interface for various methods

– scipy.optimize Open-source solvers for nonlinear problems, linear programming, constrained and nonlinear
least-squares, root finding, and curve fitting.

– PETSc/TAO Routines for the scalable (parallel) solution of scientific applications

• DEAP Distributed evolutionary algorithms

• Distributed optimization methods for minimizing sums of convex functions. Methods include:

– Primal-dual sliding (https://arxiv.org/pdf/2101.00143).

– Distributed gradient descent with gradient tracking (https://arxiv.org/abs/1908.11444).

– Proximal sliding (https://arxiv.org/abs/1406.0919).

• ECNoise Estimating Computational Noise in Numerical Simulations

• Surmise Modular Bayesian calibration/inference framework

• Tasmanian Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN

• VTMOP Fortran package for large-scale multiobjective multidisciplinary design optimization

libEnsemble has also been used to coordinate many computationally expensive simulations. Select examples include:

• OPAL Object Oriented Parallel Accelerator Library. (See this IPAC manuscript.)

• WarpX Advanced electromagnetic particle-in-cell code.

196 Chapter 6. Appendices

https://github.com/Libensemble/libe-community-examples
https://libensemble.readthedocs.io/projects/libe-community-examples/en/latest/index.html
https://github.com/Libensemble/libe-community-examples
https://link.springer.com/article/10.1007/s12532-017-0131-4
https://github.com/numericalalgorithmsgroup/dfols
https://nlopt.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/optimize.html
http://www.mcs.anl.gov/petsc
https://deap.readthedocs.io/en/master/overview.html
https://arxiv.org/pdf/2101.00143
https://arxiv.org/abs/1908.11444
https://arxiv.org/abs/1406.0919
https://www.mcs.anl.gov/~wild/cnoise/
https://surmise.readthedocs.io/en/latest/index.html
https://tasmanian.ornl.gov/
https://github.com/Libensemble/libe-community-examples#vtmop
http://amas.web.psi.ch/docs/opal/opal_user_guide-1.6.0.pdf
https://doi.org/10.18429/JACoW-ICAP2018-SAPAF03
https://warpx.readthedocs.io/en/latest/

libEnsemble User Manual, Release 1.3.0+dev

Important: See the API for generation functions here.

sampling

This module contains multiple generation functions for sampling a domain. All use (and return) a random stream in
persis_info, given by the allocation function.

sampling.uniform_random_sample(_, persis_info, gen_specs)
Output Datatypes: [('x', <class 'float'>, 2)]

Generates gen_specs["user"]["gen_batch_size"] points uniformly over the domain defined by
gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

See also:

test_uniform_sampling.py # noqa

sampling.uniform_random_sample_with_variable_resources(_, persis_info, gen_specs)
Generates gen_specs["user"]["gen_batch_size"] points uniformly over the domain defined by
gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

Also randomly requests a different number of resource sets to be used in each evaluation.

This generator is used to test/demonstrate setting of resource sets.

See also:

test_uniform_sampling_with_variable_resources.py # noqa

sampling.uniform_random_sample_with_var_priorities_and_resources(H, persis_info, gen_specs)
Generates points uniformly over the domain defined by gen_specs["user"]["ub"] and
gen_specs["user"]["lb"]. Also, randomly requests a different priority and number of resource sets
to be used in the evaluation of the generated points, after the initial batch.

This generator is used to test/demonstrate setting of priorities and resource sets.

sampling.uniform_random_sample_obj_components(H, persis_info, gen_specs)
Generates points uniformly over the domain defined by gen_specs["user"]["ub"] and
gen_specs["user"]["lb"] but requests each obj_component be evaluated separately.

See also:

test_uniform_sampling_one_residual_at_a_time.py # noqa

sampling.latin_hypercube_sample(_, persis_info, gen_specs)
Output Datatypes: [('x', <class 'float'>, (1,))]

Generates gen_specs["user"]["gen_batch_size"] points in a Latin hypercube sample over the domain
defined by gen_specs["user"]["ub"] and gen_specs["user"]["lb"].

See also:

test_1d_sampling.py # noqa

sampling.uniform_random_sample_cancel(_, persis_info, gen_specs)
Similar to uniform_random_sample but with immediate cancellation of selected points for testing.

6.5. Example User Functions and Calling Scripts 197

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_with_variable_resources.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_one_residual_at_a_time.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_1d_sampling.py

libEnsemble User Manual, Release 1.3.0+dev

sampling.py

1 """
2 This module contains multiple generation functions for sampling a domain. All
3 use (and return) a random stream in ``persis_info``, given by the allocation
4 function.
5 """
6

7 import numpy as np
8

9 from libensemble.specs import output_data
10

11 __all__ = [
12 "uniform_random_sample",
13 "uniform_random_sample_with_variable_resources",
14 "uniform_random_sample_with_var_priorities_and_resources",
15 "uniform_random_sample_obj_components",
16 "latin_hypercube_sample",
17 "uniform_random_sample_cancel",
18]
19

20

21 @output_data([("x", float, 2)]) # default: can be overwritten in gen_specs
22 def uniform_random_sample(_, persis_info, gen_specs):
23 """
24 Generates ``gen_specs["user"]["gen_batch_size"]`` points uniformly over the domain
25 defined by ``gen_specs["user"]["ub"]`` and ``gen_specs["user"]["lb"]``.
26

27 .. seealso::
28 `test_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/

→˓develop/libensemble/tests/functionality_tests/test_uniform_sampling.py>`_ # noqa
29 """
30 ub = gen_specs["user"]["ub"]
31 lb = gen_specs["user"]["lb"]
32

33 n = len(lb)
34 b = gen_specs["user"]["gen_batch_size"]
35

36 H_o = np.zeros(b, dtype=gen_specs["out"])
37

38 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
39

40 return H_o, persis_info
41

42

43 def uniform_random_sample_with_variable_resources(_, persis_info, gen_specs):
44 """
45 Generates ``gen_specs["user"]["gen_batch_size"]`` points uniformly over the domain
46 defined by ``gen_specs["user"]["ub"]`` and ``gen_specs["user"]["lb"]``.
47

48 Also randomly requests a different number of resource sets to be used in each␣
→˓evaluation.

49

(continues on next page)

198 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

50 This generator is used to test/demonstrate setting of resource sets.
51

52 .. seealso::
53 `test_uniform_sampling_with_variable_resources.py <https://github.com/

→˓Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_
→˓uniform_sampling_with_variable_resources.py>`_ # noqa

54 """
55

56 ub = gen_specs["user"]["ub"]
57 lb = gen_specs["user"]["lb"]
58 max_rsets = gen_specs["user"]["max_resource_sets"]
59

60 n = len(lb)
61 b = gen_specs["user"]["gen_batch_size"]
62

63 H_o = np.zeros(b, dtype=gen_specs["out"])
64

65 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
66 H_o["resource_sets"] = persis_info["rand_stream"].integers(1, max_rsets + 1, b)
67

68 print(f'GEN: H rsets requested: {H_o["resource_sets"]}')
69

70 return H_o, persis_info
71

72

73 def uniform_random_sample_with_var_priorities_and_resources(H, persis_info, gen_specs):
74 """
75 Generates points uniformly over the domain defined by ``gen_specs["user"]["ub"]`` and
76 ``gen_specs["user"]["lb"]``. Also, randomly requests a different priority and number␣

→˓of
77 resource sets to be used in the evaluation of the generated points, after the␣

→˓initial batch.
78

79 This generator is used to test/demonstrate setting of priorities and resource sets.
80

81 """
82 ub = gen_specs["user"]["ub"]
83 lb = gen_specs["user"]["lb"]
84 max_rsets = gen_specs["user"]["max_resource_sets"]
85

86 n = len(lb)
87

88 if len(H) == 0:
89 b = gen_specs["user"]["initial_batch_size"]
90

91 H_o = np.zeros(b, dtype=gen_specs["out"])
92 for i in range(0, b):
93 # x= i*np.ones(n)
94 x = persis_info["rand_stream"].uniform(lb, ub, (1, n))
95 H_o["x"][i] = x
96 H_o["resource_sets"][i] = 1
97 H_o["priority"] = 1

(continues on next page)

6.5. Example User Functions and Calling Scripts 199

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

98

99 else:
100 H_o = np.zeros(1, dtype=gen_specs["out"])
101 # H_o["x"] = len(H)*np.ones(n) # Can use a simple count for testing.
102 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub)
103 H_o["resource_sets"] = persis_info["rand_stream"].integers(1, max_rsets + 1)
104 H_o["priority"] = 10 * H_o["resource_sets"]
105 # print("Created sim for {} resource sets".format(H_o["resource_sets"]),␣

→˓flush=True)
106

107 return H_o, persis_info
108

109

110 def uniform_random_sample_obj_components(H, persis_info, gen_specs):
111 """
112 Generates points uniformly over the domain defined by ``gen_specs["user"]["ub"]``
113 and ``gen_specs["user"]["lb"]`` but requests each ``obj_component`` be evaluated
114 separately.
115

116 .. seealso::
117 `test_uniform_sampling_one_residual_at_a_time.py <https://github.com/Libensemble/

→˓libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_
→˓one_residual_at_a_time.py>`_ # noqa

118 """
119 ub = gen_specs["user"]["ub"]
120 lb = gen_specs["user"]["lb"]
121

122 n = len(lb)
123 m = gen_specs["user"]["components"]
124 b = gen_specs["user"]["gen_batch_size"]
125

126 H_o = np.zeros(b * m, dtype=gen_specs["out"])
127 for i in range(0, b):
128 x = persis_info["rand_stream"].uniform(lb, ub, (1, n))
129 H_o["x"][i * m : (i + 1) * m, :] = np.tile(x, (m, 1))
130 H_o["priority"][i * m : (i + 1) * m] = persis_info["rand_stream"].uniform(0, 1,␣

→˓m)
131 H_o["obj_component"][i * m : (i + 1) * m] = np.arange(0, m)
132

133 H_o["pt_id"][i * m : (i + 1) * m] = len(H) // m + i
134

135 return H_o, persis_info
136

137

138 def uniform_random_sample_cancel(_, persis_info, gen_specs):
139 """
140 Similar to uniform_random_sample but with immediate cancellation of
141 selected points for testing.
142

143 """
144 ub = gen_specs["user"]["ub"]
145 lb = gen_specs["user"]["lb"]

(continues on next page)

200 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

146

147 n = len(lb)
148 b = gen_specs["user"]["gen_batch_size"]
149

150 H_o = np.zeros(b, dtype=gen_specs["out"])
151 for i in range(b):
152 if i % 10 == 0:
153 H_o[i]["cancel_requested"] = True
154

155 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
156

157 return H_o, persis_info
158

159

160 @output_data([("x", float, (1,))])
161 def latin_hypercube_sample(_, persis_info, gen_specs):
162 """
163 Generates ``gen_specs["user"]["gen_batch_size"]`` points in a Latin
164 hypercube sample over the domain defined by ``gen_specs["user"]["ub"]`` and
165 ``gen_specs["user"]["lb"]``.
166

167 .. seealso::
168 `test_1d_sampling.py <https://github.com/Libensemble/libensemble/blob/develop/

→˓libensemble/tests/regression_tests/test_1d_sampling.py>`_ # noqa
169 """
170

171 ub = gen_specs["user"]["ub"]
172 lb = gen_specs["user"]["lb"]
173

174 n = len(lb)
175 b = gen_specs["user"]["gen_batch_size"]
176

177 H_o = np.zeros(b, dtype=gen_specs["out"])
178

179 A = lhs_sample(n, b, persis_info["rand_stream"])
180

181 H_o["x"] = A * (ub - lb) + lb
182

183 return H_o, persis_info
184

185

186 def lhs_sample(n, k, stream):
187 # Generate the intervals and random values
188 intervals = np.linspace(0, 1, k + 1)
189 rand_source = stream.uniform(0, 1, (k, n))
190 rand_pts = np.zeros((k, n))
191 sample = np.zeros((k, n))
192

193 # Add a point uniformly in each interval
194 a = intervals[:k]
195 b = intervals[1:]
196 for j in range(n):

(continues on next page)

6.5. Example User Functions and Calling Scripts 201

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

197 rand_pts[:, j] = rand_source[:, j] * (b - a) + a
198

199 # Randomly perturb
200 for j in range(n):
201 sample[:, j] = rand_pts[stream.permutation(k), j]
202

203 return sample

persistent_sampling

Persistent generator providing points using sampling

persistent_sampling.persistent_uniform(_, persis_info, gen_specs, libE_info)
Persistent Input Fields: ['f', 'x', 'sim_id']

Output Datatypes: [('x', <class 'float'>, (2,))]

This generation function always enters into persistent mode and returns gen_specs["initial_batch_size"]
uniformly sampled points the first time it is called. Afterwards, it returns the number of points given. This can
be used in either a batch or asynchronous mode by adjusting the allocation function.

See also:

test_persistent_uniform_sampling.py test_persistent_uniform_sampling_async.py

persistent_sampling.persistent_uniform_final_update(_, persis_info, gen_specs, libE_info)
Assuming the value "f" returned from sim_f is stochastic, this generation is updating an estimated mean
"f_est" of the sim_f output at each of the corners of the domain.

See also:

test_persistent_uniform_sampling_running_mean.py

persistent_sampling.persistent_request_shutdown(_, persis_info, gen_specs, libE_info)
This generation function is similar in structure to persistent_uniform, but uses a count to test exiting on a threshold
value. This principle can be used with a supporting allocation function (e.g. start_only_persistent) to shutdown
an ensemble when a condition is met.

See also:

test_persistent_uniform_gen_decides_stop.py

persistent_sampling.uniform_nonblocking(_, persis_info, gen_specs, libE_info)
This generation function is designed to test non-blocking receives.

See also:

test_persistent_uniform_sampling.py

persistent_sampling.batched_history_matching(_, persis_info, gen_specs, libE_info)
Given - sim_f with an input of x with len(x)=n - b, the batch size of points to generate - q<b, the number of best
samples to use in the following iteration

Pseudocode: Let (mu, Sigma) denote a mean and covariance matrix initialized to the origin and the identity,
respectively.

While true (batch synchronous for now):

202 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling_async.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling_running_mean.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_gen_decides_stop.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py

libEnsemble User Manual, Release 1.3.0+dev

Draw b samples x_1, . . . , x_b from MVN(mu, Sigma) Evaluate f(x_1), . . . , f(x_b) and determine
the set of q x_i whose f(x_i) values are smallest (breaking ties lexicographically) Update (mu, Sigma)
based on the sample mean and sample covariance of these q x values.

See also:

test_persistent_uniform_sampling.py

persistent_sampling.persistent_uniform_with_cancellations(_, persis_info, gen_specs, libE_info)

persistent_sampling.py

1 """Persistent generator providing points using sampling"""
2

3 import numpy as np
4

5 from libensemble.message_numbers import EVAL_GEN_TAG, FINISHED_PERSISTENT_GEN_TAG,␣
→˓PERSIS_STOP, STOP_TAG

6 from libensemble.specs import output_data, persistent_input_fields
7 from libensemble.tools.persistent_support import PersistentSupport
8

9 __all__ = [
10 "persistent_uniform",
11 "persistent_uniform_final_update",
12 "persistent_request_shutdown",
13 "uniform_nonblocking",
14 "batched_history_matching",
15 "persistent_uniform_with_cancellations",
16]
17

18

19 def _get_user_params(user_specs):
20 """Extract user params"""
21 b = user_specs["initial_batch_size"]
22 ub = user_specs["ub"]
23 lb = user_specs["lb"]
24 n = len(lb) # dimension
25 assert isinstance(b, int), "Batch size must be an integer"
26 assert isinstance(n, int), "Dimension must be an integer"
27 assert isinstance(lb, np.ndarray), "lb must be a numpy array"
28 assert isinstance(ub, np.ndarray), "ub must be a numpy array"
29 return b, n, lb, ub
30

31

32 @persistent_input_fields(["f", "x", "sim_id"])
33 @output_data([("x", float, (2,))])
34 def persistent_uniform(_, persis_info, gen_specs, libE_info):
35 """
36 This generation function always enters into persistent mode and returns
37 ``gen_specs["initial_batch_size"]`` uniformly sampled points the first time it
38 is called. Afterwards, it returns the number of points given. This can be
39 used in either a batch or asynchronous mode by adjusting the allocation
40 function.

(continues on next page)

6.5. Example User Functions and Calling Scripts 203

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

41

42 .. seealso::
43 `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/

→˓blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>
→˓`_

44 `test_persistent_uniform_sampling_async.py <https://github.com/Libensemble/
→˓libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_
→˓sampling_async.py>`_

45 """ # noqa
46

47 b, n, lb, ub = _get_user_params(gen_specs["user"])
48 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
49

50 # Send batches until manager sends stop tag
51 tag = None
52 while tag not in [STOP_TAG, PERSIS_STOP]:
53 H_o = np.zeros(b, dtype=gen_specs["out"])
54 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
55 if "obj_component" in H_o.dtype.fields:
56 H_o["obj_component"] = persis_info["rand_stream"].integers(
57 low=0, high=gen_specs["user"]["num_components"], size=b
58)
59 tag, Work, calc_in = ps.send_recv(H_o)
60 if hasattr(calc_in, "__len__"):
61 b = len(calc_in)
62

63 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
64

65

66 def persistent_uniform_final_update(_, persis_info, gen_specs, libE_info):
67 """
68 Assuming the value ``"f"`` returned from sim_f is stochastic, this
69 generation is updating an estimated mean ``"f_est"`` of the sim_f output at
70 each of the corners of the domain.
71

72 .. seealso::
73 `test_persistent_uniform_sampling_running_mean.py <https://github.com/

→˓Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_
→˓persistent_uniform_sampling_running_mean.py>`_

74 """ # noqa
75

76 b, n, lb, ub = _get_user_params(gen_specs["user"])
77 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
78

79 def generate_corners(x, y):
80 n = len(x)
81 corner_indices = np.arange(2**n)
82 corners = []
83 for index in corner_indices:
84 corner = [x[i] if index & (1 << i) else y[i] for i in range(n)]
85 corners.append(corner)
86 return corners

(continues on next page)

204 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

87

88 def sample_corners_with_probability(corners, p, b):
89 selected_corners = np.random.choice(len(corners), size=b, p=p)
90 sampled_corners = [corners[i] for i in selected_corners]
91 return sampled_corners, selected_corners
92

93 corners = generate_corners(lb, ub)
94

95 # Start with equal probabilities
96 p = np.ones(2**n) / 2**n
97

98 running_total = np.nan * np.ones(2**n)
99 number_of_samples = np.zeros(2**n)

100 sent = np.array([], dtype=int)
101

102 # Send batches of `b` points until manager sends stop tag
103 tag = None
104 next_id = 0
105 while tag not in [STOP_TAG, PERSIS_STOP]:
106 H_o = np.zeros(b, dtype=gen_specs["out"])
107 H_o["sim_id"] = range(next_id, next_id + b)
108 next_id += b
109

110 sampled_corners, corner_ids = sample_corners_with_probability(corners, p, b)
111

112 H_o["corner_id"] = corner_ids
113 H_o["x"] = sampled_corners
114 sent = np.append(sent, corner_ids)
115

116 tag, Work, calc_in = ps.send_recv(H_o)
117 if hasattr(calc_in, "__len__"):
118 b = len(calc_in)
119 for row in calc_in:
120 number_of_samples[row["corner_id"]] += 1
121 if np.isnan(running_total[row["corner_id"]]):
122 running_total[row["corner_id"]] = row["f"]
123 else:
124 running_total[row["corner_id"]] += row["f"]
125

126 # Having received a PERSIS_STOP, update f_est field for all points and return
127 # For manager to honor final H_o return, must have set libE_specs["use_persis_return_

→˓gen"] = True
128 f_est = running_total / number_of_samples
129 H_o = np.zeros(len(sent), dtype=[("sim_id", int), ("corner_id", int), ("f_est",␣

→˓float)])
130 for count, i in enumerate(sent):
131 H_o["sim_id"][count] = count
132 H_o["corner_id"][count] = i
133 H_o["f_est"][count] = f_est[i]
134

135 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
136

(continues on next page)

6.5. Example User Functions and Calling Scripts 205

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

137

138 def persistent_request_shutdown(_, persis_info, gen_specs, libE_info):
139 """
140 This generation function is similar in structure to persistent_uniform,
141 but uses a count to test exiting on a threshold value. This principle can
142 be used with a supporting allocation function (e.g. start_only_persistent)
143 to shutdown an ensemble when a condition is met.
144

145 .. seealso::
146 `test_persistent_uniform_gen_decides_stop.py <https://github.com/Libensemble/

→˓libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_
→˓gen_decides_stop.py>`_

147 """ # noqa
148 b, n, lb, ub = _get_user_params(gen_specs["user"])
149 shutdown_limit = gen_specs["user"]["shutdown_limit"]
150 f_count = 0
151 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
152

153 # Send batches until manager sends stop tag
154 tag = None
155 while tag not in [STOP_TAG, PERSIS_STOP]:
156 H_o = np.zeros(b, dtype=gen_specs["out"])
157 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
158 tag, Work, calc_in = ps.send_recv(H_o)
159 if hasattr(calc_in, "__len__"):
160 b = len(calc_in)
161 f_count += b
162 if f_count >= shutdown_limit:
163 print("Reached threshold.", f_count, flush=True)
164 break # End the persistent gen
165

166 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
167

168

169 def uniform_nonblocking(_, persis_info, gen_specs, libE_info):
170 """
171 This generation function is designed to test non-blocking receives.
172

173 .. seealso::
174 `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/

→˓blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>
→˓`_

175 """ # noqa
176 b, n, lb, ub = _get_user_params(gen_specs["user"])
177 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
178

179 # Send batches until manager sends stop tag
180 tag = None
181 while tag not in [STOP_TAG, PERSIS_STOP]:
182 H_o = np.zeros(b, dtype=gen_specs["out"])
183 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
184 ps.send(H_o)

(continues on next page)

206 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

185

186 received = False
187 spin_count = 0
188 while not received:
189 tag, Work, calc_in = ps.recv(blocking=False)
190 if tag is not None:
191 received = True
192 else:
193 spin_count += 1
194

195 persis_info["spin_count"] = spin_count
196

197 if hasattr(calc_in, "__len__"):
198 b = len(calc_in)
199

200 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
201

202

203 def batched_history_matching(_, persis_info, gen_specs, libE_info):
204 """
205 Given
206 - sim_f with an input of x with len(x)=n
207 - b, the batch size of points to generate
208 - q<b, the number of best samples to use in the following iteration
209

210 Pseudocode:
211 Let (mu, Sigma) denote a mean and covariance matrix initialized to the
212 origin and the identity, respectively.
213

214 While true (batch synchronous for now):
215

216 Draw b samples x_1, ... , x_b from MVN(mu, Sigma)
217 Evaluate f(x_1), ... , f(x_b) and determine the set of q x_i whose f(x_i) values␣

→˓are smallest (breaking ties lexicographically)
218 Update (mu, Sigma) based on the sample mean and sample covariance of these q x␣

→˓values.
219

220 .. seealso::
221 `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/

→˓blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>
→˓`_

222 """ # noqa
223 lb = gen_specs["user"]["lb"]
224

225 n = len(lb)
226 b = gen_specs["user"]["initial_batch_size"]
227 q = gen_specs["user"]["num_best_vals"]
228 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
229

230 mu = np.zeros(n)
231 Sigma = np.eye(n)
232 tag = None

(continues on next page)

6.5. Example User Functions and Calling Scripts 207

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

233

234 while tag not in [STOP_TAG, PERSIS_STOP]:
235 H_o = np.zeros(b, dtype=gen_specs["out"])
236 H_o["x"] = persis_info["rand_stream"].multivariate_normal(mu, Sigma, b)
237

238 # Send data and get next assignment
239 tag, Work, calc_in = ps.send_recv(H_o)
240 if calc_in is not None:
241 all_inds = np.argsort(calc_in["f"])
242 best_inds = all_inds[:q]
243 mu = np.mean(H_o["x"][best_inds], axis=0)
244 Sigma = np.cov(H_o["x"][best_inds].T)
245

246 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG
247

248

249 def persistent_uniform_with_cancellations(_, persis_info, gen_specs, libE_info):
250 ub = gen_specs["user"]["ub"]
251 lb = gen_specs["user"]["lb"]
252 n = len(lb)
253 b = gen_specs["user"]["initial_batch_size"]
254

255 # Start cancelling points from half initial batch onward
256 cancel_from = b // 2 # Should get at least this many points back
257

258 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
259

260 # Send batches until manager sends stop tag
261 tag = None
262 while tag not in [STOP_TAG, PERSIS_STOP]:
263 H_o = np.zeros(b, dtype=gen_specs["out"])
264 H_o["x"] = persis_info["rand_stream"].uniform(lb, ub, (b, n))
265 tag, Work, calc_in = ps.send_recv(H_o)
266

267 if hasattr(calc_in, "__len__"):
268 b = len(calc_in)
269

270 # Cancel as many points as got back
271 cancel_ids = list(range(cancel_from, cancel_from + b))
272 cancel_from += b
273 ps.request_cancel_sim_ids(cancel_ids)
274

275 return H_o, persis_info, FINISHED_PERSISTENT_GEN_TAG

208 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

persistent_sampling_var_resources

Persistent random sampling using various methods of dynamic resource assignment

Each function generates points uniformly over the domain defined by gen_specs["user"]["ub"] and
gen_specs["user"]["lb"].

Most functions use a random request of resources over a range, setting num_procs, num_gpus, or resource sets. The
function uniform_sample_with_var_gpus uses the x value to determine the number of GPUs requested.

persistent_sampling_var_resources.uniform_sample(_, persis_info, gen_specs, libE_info)
Randomly requests a different number of resource sets to be used in the evaluation of the generated points.

See also:

test_uniform_sampling_with_variable_resources.py

persistent_sampling_var_resources.uniform_sample_with_var_gpus(_, persis_info, gen_specs,
libE_info)

Requests a number of GPUs based on the x value to be used in the evaluation of the generated points. By default,
simulations will assign one MPI processor per GPU.

Note that the num_gpus gen_specs[“out”] option (similar to num_procs) does not need to be passed as a
sim_specs[“in”]. It will automatically be passed to simulation functions and used by any MPI Executor unless
overridden in the executor.submit function.

See also:

test_GPU_variable_resources.py

persistent_sampling_var_resources.uniform_sample_with_procs_gpus(_, persis_info, gen_specs,
libE_info)

Randomly requests a different number of processors and gpus to be used in the evaluation of the generated points.

See also:

test_GPU_variable_resources.py

persistent_sampling_var_resources.uniform_sample_with_var_priorities(_, persis_info, gen_specs,
libE_info)

Initial batch has matching priorities, after which a different number of resource sets and priorities are requested
for each point.

persistent_sampling_var_resources.uniform_sample_diff_simulations(_, persis_info, gen_specs,
libE_info)

Randomly requests a different number of processors for each simulation. One simulation type also uses GPUs.

See also:

test_GPU_variable_resources_multi_task.py

persistent_sampling_var_resources.uniform_sample_with_sim_gen_resources(_, persis_info,
gen_specs, libE_info)

Randomly requests a different number of processors and gpus to be used in the evaluation of the generated points.

See also:

test_GPU_variable_resources.py

6.5. Example User Functions and Calling Scripts 209

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_with_variable_resources.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_GPU_variable_resources.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_GPU_variable_resources.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_GPU_variable_resources_multi_task.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_GPU_variable_resources.py

libEnsemble User Manual, Release 1.3.0+dev

APOSMM

Asynchronously Parallel Optimization Solver for finding Multiple Minima (APOSMM) coordinates concurrent local
optimization runs in order to identify many local minima.

Required: mpmath, SciPy

Optional (see below): petsc4py, nlopt, DFO-LS

Configuring APOSMM

APOSMM works with a choice of optimizers, some requiring external packages. To import the optimization packages
(and their dependencies) at a global level (recommended), add the following lines in the calling script before importing
APOSMM:

import libensemble.gen_funcs
libensemble.gen_funcs.rc.aposmm_optimizers = <optimizers>

where optimizers is a string (or list of strings) from the available options:

"petsc", "nlopt", "dfols", "scipy", "external"

Issues with ensemble hanging or failed simulations?

Note that if using mpi4py comms, PETSc must be imported at the global level or the ensemble may hang.

Exception: In the case that you are using the MPIExecutor or other MPI inside a user function and you are using Open
MPI, then you must:

• Use local comms for libEnsemble (not mpi4py)

• Must NOT include the rc line above

This is because PETSc imports MPI, and a global import of PETSc would result in nested MPI (which is not supported
by Open MPI). When the above line is not used, an import local to the optimization function will happen.

To see the optimization algorithms supported, see LocalOptInterfacer.

See also:

Persistent APOSMM Tutorial

Persistent APOSMM

This module contains methods used our implementation of the Asynchronously Parallel Optimization Solver for finding
Multiple Minima (APOSMM) method. https://doi.org/10.1007/s12532-017-0131-4

This implementation of APOSMM was developed by Kaushik Kulkarni and Jeffrey Larson in the summer of 2019.

persistent_aposmm.aposmm(H, persis_info, gen_specs, libE_info)
APOSMM coordinates multiple local optimization runs, starting from points which do not have a better point
nearby (within a distance r_k). This generation function uses a local_H (serving a similar purpose as H in
libEnsemble) containing the fields:

• 'x' [n floats]: Parameters being optimized over

• 'x_on_cube' [n floats]: Parameters scaled to the unit cube

• 'f' [float]: Objective function being minimized

210 Chapter 6. Appendices

https://pypi.org/project/mpmath
https://pypi.org/project/scipy
https://bitbucket.org/petsc/petsc4py
https://nlopt.readthedocs.io/en/latest/
https://github.com/numericalalgorithmsgroup/dfols
https://doi.org/10.1007/s12532-017-0131-4

libEnsemble User Manual, Release 1.3.0+dev

• 'local_pt' [bool]: True if point from a local optimization run

• 'dist_to_unit_bounds' [float]: Distance to domain boundary

• 'dist_to_better_l' [float]: Dist to closest better local opt point

• 'dist_to_better_s' [float]: Dist to closest better sample point

• 'ind_of_better_l' [int]: Index of point 'dist_to_better_l’ away

• 'ind_of_better_s' [int]: Index of point 'dist_to_better_s’ away

• 'started_run' [bool]: True if point has started a local opt run

• 'num_active_runs' [int]: Number of active local runs point is in

• 'local_min' [float]: True if point has been ruled a local minima

• 'sim_id' [int]: Row number of entry in history

and optionally

• 'fvec' [m floats]: All objective components (if performing a least-squares calculation)

• 'grad' [n floats]: The gradient (if available) of the objective with respect to x.

Note:

• If any of the above fields are desired after a libEnsemble run, name them in gen_specs['out'].

• If intitializing APOSMM with past function values, make sure to include 'x', 'x_on_cube', 'f',
'local_pt', etc. in gen_specs['in'] (and, of course, include them in the H0 array given to libensem-
ble).

Necessary quantities in gen_specs['user'] are:

• 'lb' [n floats]: Lower bound on search domain

• 'ub' [n floats]: Upper bound on search domain

• 'localopt_method' [str]: Name of an NLopt, PETSc/TAO, or SciPy method (see ‘ad-
vance_local_run’ below for supported methods). When using a SciPy method, must supply
'opt_return_codes', a list of integers that will be used to determine if the x produced by the localopt
method should be ruled a local minimum. (For example, SciPy’s COBYLA has a ‘status’ of 1 if at an
optimum, but SciPy’s Nelder-Mead and BFGS have a ‘status’ of 0 if at an optimum.)

• 'initial_sample_size' [int]: Number of uniformly sampled points must be returned (non-nan
value) before a local opt run is started. Can be zero if no additional sampling is desired, but if zero there
must be past sim_f values given to libEnsemble in H0.

Optional gen_specs['user'] entries are:

• 'sample_points' [numpy array]: Points to be sampled (original domain). If more sample points are
needed by APOSMM during the course of the optimization, points will be drawn uniformly over the domain

• 'components' [int]: Number of objective components

• 'dist_to_bound_multiple' [float in (0, 1]]: What fraction of the distance to the nearest bound-
ary should the initial step size be in localopt runs

• 'lhs_divisions' [int]: Number of Latin hypercube sampling partitions (0 or 1 results in uniform
sampling)

• 'mu' [float]: Distance from the boundary that all localopt starting points must satisfy

• 'nu' [float]: Distance from identified minima that all starting points must satisfy

• 'rk_const' [float]: Multiplier in front of the r_k value

6.5. Example User Functions and Calling Scripts 211

libEnsemble User Manual, Release 1.3.0+dev

• 'max_active_runs' [int]: Bound on number of runs APOSMM is advancing

• 'stop_after_k_minima' [int]: Tell APOSMM to stop after this many local minima have been iden-
tified by a local optimization run.

• 'stop_after_k_runs' [int]: Tell APOSMM to stop after this many runs have ended. (The number of
ended runs may be less than the number of minima if, for example, a local optimization run ends due to a
evaluation constraint, but not convergence criteria.)

If the rules in decide_where_to_start_localopt produces more than 'max_active_runs' in some itera-
tion, then existing runs are prioritized.

And gen_specs['user']must also contain fields for the given localopt_method’s convergence tolerances (e.g.,
gatol/grtol for PETSC/TAO or ftol_rel for NLopt)

See also:

test_persistent_aposmm_scipy for basic APOSMM usage.

See also:

test_persistent_aposmm_with_grad for an example where past function values are given to libEnsem-
ble/APOSMM.

persistent_aposmm.initialize_APOSMM(H, user_specs, libE_info)
Computes common values every time that APOSMM is reinvoked

See also:

start_persistent_local_opt_gens.py

persistent_aposmm.decide_where_to_start_localopt(H, n, n_s, rk_const, ld=0, mu=0, nu=0)
APOSMM starts a local optimization runs from a point that:

• is not in an active local optimization run,

• is more than mu from the boundary (in the unit-cube domain),

• is more than nu from identified minima (in the unit-cube domain),

• does not have a better point within a distance r_k of it.

For further details, see the conditions (S1-S5 and L1-L8) in Table 1 of the APOSMM paper This method first
identifies sample points satisfying S2-S5, and then identifies all localopt points that satisfy L1-L7. We then start
from any sample point also satisfying S1. We do not check condition L8 currently.

We don’t consider points in the history that have not returned from computation, or that have a nan value. As
APOSMM works on the unit cube, note that mu and nu implicitly depend on the scaling of the original domain:
adjusting the initial domain can make a run start (or not start) at a point that didn’t (or did) previously.

Parameters

• H (numpy.ndarray) – History array storing rows for each point. Numpy structured array.

• n (int) – Problem dimension

• n_s (int) – Number of sample points in H

• r_k_const (float) – Radius for deciding when to start runs

• ld (int) – Number of Latin hypercube sampling divisions (0 or 1 means uniform random
sampling over the domain)

• mu (float) – Nonnegative distance from the boundary that all starting points must satisfy

212 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_scipy.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_with_grad.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/start_persistent_local_opt_gens.py
https://doi.org/10.1007/s12532-017-0131-4

libEnsemble User Manual, Release 1.3.0+dev

• nu (float) – Nonnegative distance from identified minima that all starting points must sat-
isfy

Returns
start_inds – Indices where a local opt run should be started, sorted by increasing function value.

Return type
list

See also:

start_persistent_local_opt_gens.py

persistent_aposmm.update_history_dist(H, n)
Updates distances/indices after new points that have been evaluated.

See also:

start_persistent_local_opt_gens.py

LocalOptInterfacer

This module contains methods for APOSMM to interface with various local optimization routines.

class aposmm_localopt_support.LocalOptInterfacer(user_specs, x0, f0, grad0=None)
This class defines the APOSMM interface to various local optimization routines.

Currently supported routines are

• NLopt routines [‘LN_SBPLX’, ‘LN_BOBYQA’, ‘LN_COBYLA’, ‘LN_NEWUOA’,
‘LN_NELDERMEAD’, ‘LD_MMA’]

• PETSc/TAO routines [‘pounders’, ‘blmvm’, ‘nm’]

• SciPy routines [‘scipy_Nelder-Mead’, ‘scipy_COBYLA’, ‘scipy_BFGS’]

• DFOLS [‘dfols’]

• External local optimizer [‘external_localopt’] (which use files to pass/receive x/f values)

iterate(data)
Returns an instance of either numpy.ndarray corresponding to the next iterative guess or ConvergedMsg
when the solver has completed its run.

Parameters

• x_on_cube – A numpy array of the point being evaluated (for a handshake)

• f – A numpy array of the function evaluation.

• grad – A numpy array of the function’s gradient.

• fvec – A numpy array of the function’s component values.

destroy()

Recursively kill any optimizer processes still running

close()

Join process and close queue

aposmm_localopt_support.run_local_nlopt(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs an NLopt local optimization run starting at x0, governed by the parameters in user_specs.

6.5. Example User Functions and Calling Scripts 213

https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/start_persistent_local_opt_gens.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/alloc_funcs/start_persistent_local_opt_gens.py

libEnsemble User Manual, Release 1.3.0+dev

aposmm_localopt_support.run_local_tao(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs a PETSc/TAO local optimization run starting at x0, governed by the parameters in user_specs.

aposmm_localopt_support.run_local_dfols(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs a DFOLS local optimization run starting at x0, governed by the parameters in user_specs.

aposmm_localopt_support.run_local_ibcdfo_pounders(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs a IBCDFO local optimization run starting at x0, governed by the parameters in user_specs.

Although IBCDFO methods can receive previous evaluations, few other methods support that, so APOSMM
assumes the first point will be re-evaluated (but not be sent back to the manager).

aposmm_localopt_support.run_local_scipy_opt(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs a SciPy local optimization run starting at x0, governed by the parameters in user_specs.

aposmm_localopt_support.run_external_localopt(user_specs, comm_queue, x0, f0, child_can_read,
parent_can_read)

Runs an external local optimization run starting at x0, governed by the parameters in user_specs.

uniform_or_localopt

Required: nlopt This module is a persistent generation function that performs a uniform random sample when
libE_info["persistent"] isn’t True, or performs a single persistent persistent nlopt local optimization run.

uniform_or_localopt.uniform_or_localopt(H, persis_info, gen_specs, libE_info)
This generation function returns gen_specs["user"]["gen_batch_size"] uniformly sampled points when
called in nonpersistent mode (i.e., when libE_info["persistent"] isn’t True). Otherwise, the generation
function starts a persistent nlopt local optimization run.

See also:

test_uniform_sampling_then_persistent_localopt_runs.py # noqa

persistent_tasmanian

Required: Tasmanian, pypackaging, scikit-build

Note that Tasmanian can be pip installed, but currently must use either venv or –user install.

E.g: pip install scikit-build packaging Tasmanian --user A persistent generator using the uncer-
tainty quantification capabilities in Tasmanian.

persistent_tasmanian.lex_le(x, y, tol=1e-12)
Returns True if x <= y lexicographically up to some tolerance.

persistent_tasmanian.get_2D_insert_indices(x, y, x_ord=array([], dtype=int64), y_ord=array([],
dtype=int64), tol=1e-12)

Finds the row indices in a 2D numpy array x for which the sorted values of y can be inserted into. If x_ord (resp.
y_ord) is empty, then x (resp. y) must be lexicographically sorted. Otherwise, x[x_ord] (resp. y[y_ord]) must
be lexicographically sorted. Complexity is O(x.shape[0] + y.shape[0]).

214 Chapter 6. Appendices

https://nlopt.readthedocs.io/en/latest/
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_then_persistent_localopt_runs.py
https://tasmanian.ornl.gov/
https://pypi.org/project/pypackaging/
https://scikit-build.readthedocs.io/en/latest/index.html
https://tasmanian.ornl.gov/

libEnsemble User Manual, Release 1.3.0+dev

persistent_tasmanian.get_2D_duplicate_indices(x, y, x_ord=array([], dtype=int64), y_ord=array([],
dtype=int64), tol=1e-12)

Finds the row indices of a 2D numpy array x which overlap with y. If x_ord (resp. y_ord) is empty, then x
(resp. y) must be lexicographically sorted. Otherwise, x[x_ord] (resp. y[y_ord]) must be lexicographically
sorted.Complexity is O(x.shape[0] + y.shape[0]).

persistent_tasmanian.get_state(queued_pts, queued_ids, id_offset, new_points=array([], dtype=float64),
completed_points=array([], dtype=float64), tol=1e-12)

Creates the data to be sent and updates the state arrays and scalars if new information (new_points or com-
pleted_points) arrives. Ensures that the output state arrays remain sorted if the input state arrays are already
sorted.

persistent_tasmanian.get_H0(gen_specs, refined_pts, refined_ord, queued_pts, queued_ids, tol=1e-12)
For runs following the first one, get the history array H0 based on the ordering in refined_pts

persistent_tasmanian.sparse_grid_batched(H, persis_info, gen_specs, libE_info)
Implements batched construction for a Tasmanian sparse grid, using the loop described in Tasmanian Example
09: sparse grid example

persistent_tasmanian.sparse_grid_async(H, persis_info, gen_specs, libE_info)
Implements asynchronous construction for a Tasmanian sparse grid, using the logic in the dynamic Tasmanian
model construction function: sparse grid dynamic example

persistent_tasmanian.get_sparse_grid_specs(user_specs, sim_f , num_dims, num_outputs=1,
mode='batched')

Helper function that generates the simulator, generator, and allocator specs as well as the persis_info dictionary
to ensure that they are compatible with the custom generators in this script. The outputs should be used in the
main libE() call.

INPUTS:

user_specs (dict)
[a dictionary of user specs that is needed in the generator specs;] expects the key “tasmanian_init”
whose value is a 0-argument lambda that initializes an appropriate Tasmanian sparse grid object.

sim_f (func)
[a lambda function that takes in generator outputs (simulator inputs)] and returns simulator outputs.

num_dims (int) : number of model inputs.

num_outputs (int) : number of model outputs.

mode (string) : can either be “batched” or “async”.

OUTPUTS:
sim_specs (dict) : a dictionary of simulation specs and also one of the inputs of libE().

gen_specs (dict) : a dictionary of generator specs and also one of the inputs of libE().

alloc_specs (dict) : a dictionary of allocation specs and also one of the inputs of libE().

persis_info (dict)
[a dictionary containing common information that is passed to all] workers and also one of the inputs
of libE().

6.5. Example User Functions and Calling Scripts 215

https://github.com/ORNL/TASMANIAN/blob/master/InterfacePython/example_sparse_grids_09.py
https://github.com/ORNL/TASMANIAN/blob/master/Addons/tsgConstructSurrogate.hpp

libEnsemble User Manual, Release 1.3.0+dev

persistent_tasmanian.py

1 """
2 A persistent generator using the uncertainty quantification capabilities in
3 `Tasmanian <https://tasmanian.ornl.gov/>`_.
4 """
5

6 import numpy as np
7

8 from libensemble.alloc_funcs.start_only_persistent import only_persistent_gens as allocf
9 from libensemble.message_numbers import EVAL_GEN_TAG, FINISHED_PERSISTENT_GEN_TAG,␣

→˓PERSIS_STOP, STOP_TAG
10 from libensemble.tools import parse_args
11 from libensemble.tools.persistent_support import PersistentSupport
12

13

14 def lex_le(x, y, tol=1e-12):
15 """
16 Returns True if x <= y lexicographically up to some tolerance.
17 """
18 cmp = np.fabs(x - y) > tol
19 ind = np.argmax(cmp)
20 if not cmp[ind]:
21 return True
22 return x[ind] <= y[ind]
23

24

25 def get_2D_insert_indices(x, y, x_ord=np.empty(0, dtype="int"), y_ord=np.empty(0, dtype=
→˓"int"), tol=1e-12):

26 """
27 Finds the row indices in a 2D numpy array `x` for which the sorted values of `y` can␣

→˓be inserted
28 into. If `x_ord` (resp. `y_ord`) is empty, then `x` (resp. `y`) must be␣

→˓lexicographically
29 sorted. Otherwise, `x[x_ord]` (resp. `y[y_ord]`) must be lexicographically sorted.␣

→˓Complexity is
30 O(x.shape[0] + y.shape[0]).
31 """
32 assert len(x.shape) == 2
33 assert len(y.shape) == 2
34 if x.size == 0:
35 return np.zeros(y.shape[0], dtype="int")
36 else:
37 if x_ord.size == 0:
38 x_ord = np.arange(x.shape[0], dtype="int")
39 if y_ord.size == 0:
40 y_ord = np.arange(y.shape[0], dtype="int")
41 x_ptr = 0
42 y_ptr = 0
43 out_ord = np.empty(0, dtype="int")
44 while y_ptr < y.shape[0]:
45 # The case where y[k] <= max of x[k:end, :]
46 xk = x[x_ord[x_ptr], :]

(continues on next page)

216 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

47 yk = y[y_ord[y_ptr], :]
48 if lex_le(yk, xk, tol=tol):
49 out_ord = np.append(out_ord, x_ord[x_ptr])
50 y_ptr += 1
51 else:
52 x_ptr += 1
53 # The edge case where y[k] is the largest of all elements of x.
54 if x_ptr >= x_ord.shape[0]:
55 for i in range(y_ptr, y_ord.shape[0], 1):
56 out_ord = np.append(out_ord, x_ord.shape[0])
57 y_ptr += 1
58 break
59 return out_ord
60

61

62 def get_2D_duplicate_indices(x, y, x_ord=np.empty(0, dtype="int"), y_ord=np.empty(0,␣
→˓dtype="int"), tol=1e-12):

63 """
64 Finds the row indices of a 2D numpy array `x` which overlap with `y`. If `x_ord` (resp.

→˓ `y_ord`)
65 is empty, then `x` (resp. `y`) must be lexicographically sorted. Otherwise, `x[x_ord]`␣

→˓(resp.
66 `y[y_ord]`) must be lexicographically sorted.Complexity is O(x.shape[0] + y.shape[0]).
67 """
68 assert len(x.shape) == 2
69 assert len(y.shape) == 2
70 if x.size == 0:
71 return np.empty(0, dtype="int")
72 else:
73 if x_ord.size == 0:
74 x_ord = np.arange(x.shape[0], dtype="int")
75 if y_ord.size == 0:
76 y_ord = np.arange(y.shape[0], dtype="int")
77 x_ptr = 0
78 y_ptr = 0
79 out_ord = np.empty(0, dtype="int")
80 while y_ptr < y.shape[0] and x_ptr < x.shape[0]:
81 # The case where y[k] <= max of x[k:end, :]
82 xk = x[x_ord[x_ptr], :]
83 yk = y[y_ord[y_ptr], :]
84 if all(np.fabs(yk - xk) <= tol):
85 out_ord = np.append(out_ord, x_ord[x_ptr])
86 x_ptr += 1
87 elif lex_le(xk, yk, tol=tol):
88 x_ptr += 1
89 else:
90 y_ptr += 1
91 return out_ord
92

93

94 def get_state(queued_pts, queued_ids, id_offset, new_points=np.array([]), completed_
→˓points=np.array([]), tol=1e-12):

(continues on next page)

6.5. Example User Functions and Calling Scripts 217

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

95 """
96 Creates the data to be sent and updates the state arrays and scalars if new␣

→˓information
97 (new_points or completed_points) arrives. Ensures that the output state arrays␣

→˓remain sorted if
98 the input state arrays are already sorted.
99 """

100 if new_points.size > 0:
101 new_points_ord = np.lexsort(np.rot90(new_points))
102 new_points_ids = id_offset + np.arange(new_points.shape[0])
103 id_offset += new_points.shape[0]
104 insert_idx = get_2D_insert_indices(queued_pts, new_points, y_ord=new_points_ord,␣

→˓tol=tol)
105 queued_pts = np.insert(queued_pts, insert_idx, new_points[new_points_ord],␣

→˓axis=0)
106 queued_ids = np.insert(queued_ids, insert_idx, new_points_ids[new_points_ord],␣

→˓axis=0)
107

108 if completed_points.size > 0:
109 completed_ord = np.lexsort(np.rot90(completed_points))
110 delete_ind = get_2D_duplicate_indices(queued_pts, completed_points, y_

→˓ord=completed_ord, tol=tol)
111 queued_pts = np.delete(queued_pts, delete_ind, axis=0)
112 queued_ids = np.delete(queued_ids, delete_ind, axis=0)
113

114 return queued_pts, queued_ids, id_offset
115

116

117 def get_H0(gen_specs, refined_pts, refined_ord, queued_pts, queued_ids, tol=1e-12):
118 """
119 For runs following the first one, get the history array H0 based on the ordering in␣

→˓`refined_pts`
120 """
121

122 def approx_eq(x, y):
123 return np.argmax(np.fabs(x - y)) <= tol
124

125 num_ids = queued_ids.shape[0]
126 H0 = np.zeros(num_ids, dtype=gen_specs["out"])
127 refined_priority = np.flip(np.arange(refined_pts.shape[0], dtype="int"))
128 rptr = 0
129 for qptr in range(num_ids):
130 while not approx_eq(refined_pts[refined_ord[rptr]], queued_pts[qptr]):
131 rptr += 1
132 assert rptr <= refined_pts.shape[0]
133 H0["x"][qptr] = queued_pts[qptr]
134 H0["sim_id"][qptr] = queued_ids[qptr]
135 H0["priority"][qptr] = refined_priority[refined_ord[rptr]]
136 return H0
137

138

139 # ========================

(continues on next page)

218 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

140 # Main generator functions
141 # ========================
142

143

144 def sparse_grid_batched(H, persis_info, gen_specs, libE_info):
145 """
146 Implements batched construction for a Tasmanian sparse grid,
147 using the loop described in Tasmanian Example 09:
148 `sparse grid example <https://github.com/ORNL/TASMANIAN/blob/master/InterfacePython/

→˓example_sparse_grids_09.py>`_
149

150 """
151 U = gen_specs["user"]
152 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
153 grid = U["tasmanian_init"]() # initialize the grid
154 allowed_refinements = [
155 "setAnisotropicRefinement",
156 "getAnisotropicRefinement",
157 "setSurplusRefinement",
158 "getSurplusRefinement",
159 "none",
160]
161 assert (
162 "refinement" in U and U["refinement"] in allowed_refinements
163), f"Must provide a gen_specs['user']['refinement'] in: {allowed_refinements}"
164

165 while grid.getNumNeeded() > 0:
166 aPoints = grid.getNeededPoints()
167

168 H0 = np.zeros(len(aPoints), dtype=gen_specs["out"])
169 H0["x"] = aPoints
170

171 # Receive values from manager
172 tag, Work, calc_in = ps.send_recv(H0)
173 if tag in [STOP_TAG, PERSIS_STOP]:
174 break
175 aModelValues = calc_in["f"]
176

177 # Update surrogate on grid
178 t = aModelValues.reshape((aModelValues.shape[0], grid.getNumOutputs()))
179 t = t.flatten()
180 t = np.atleast_2d(t).T
181 grid.loadNeededPoints(t)
182

183 if "tasmanian_checkpoint_file" in U:
184 grid.write(U["tasmanian_checkpoint_file"])
185

186 # set refinement, using user["refinement"] to pick the refinement strategy
187 if U["refinement"] in ["setAnisotropicRefinement", "getAnisotropicRefinement"]:
188 assert "sType" in U
189 assert "iMinGrowth" in U
190 assert "iOutput" in U

(continues on next page)

6.5. Example User Functions and Calling Scripts 219

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

191 grid.setAnisotropicRefinement(U["sType"], U["iMinGrowth"], U["iOutput"])
192 elif U["refinement"] in ["setSurplusRefinement", "getSurplusRefinement"]:
193 assert "fTolerance" in U
194 assert "iOutput" in U
195 assert "sCriteria" in U
196 grid.setSurplusRefinement(U["fTolerance"], U["iOutput"], U["sCriteria"])
197

198 return H0, persis_info, FINISHED_PERSISTENT_GEN_TAG
199

200

201 def sparse_grid_async(H, persis_info, gen_specs, libE_info):
202 """
203 Implements asynchronous construction for a Tasmanian sparse grid,
204 using the logic in the dynamic Tasmanian model construction function:
205 `sparse grid dynamic example <https://github.com/ORNL/TASMANIAN/blob/master/Addons/

→˓tsgConstructSurrogate.hpp>`_
206

207 """
208 U = gen_specs["user"]
209 ps = PersistentSupport(libE_info, EVAL_GEN_TAG)
210 grid = U["tasmanian_init"]() # initialize the grid
211 allowed_refinements = ["getCandidateConstructionPoints",

→˓"getCandidateConstructionPointsSurplus"]
212 assert (
213 "refinement" in U and U["refinement"] in allowed_refinements
214), f"Must provide a gen_specs['user']['refinement'] in: {allowed_refinements}"
215 tol = U["_match_tolerance"] if "_match_tolerance" in U else 1.0e-12
216

217 # Choose the refinement function based on U["refinement"].
218 if U["refinement"] == "getCandidateConstructionPoints":
219 assert "sType" in U
220 assert "liAnisotropicWeightsOrOutput" in U
221 if U["refinement"] == "getCandidateConstructionPointsSurplus":
222 assert "fTolerance" in U
223 assert "sRefinementType" in U
224

225 def get_refined_points(g, U):
226 if U["refinement"] == "getCandidateConstructionPoints":
227 return g.getCandidateConstructionPoints(U["sType"], U[

→˓"liAnisotropicWeightsOrOutput"])
228 else:
229 assert U["refinement"] == "getCandidateConstructionPointsSurplus"
230 return g.getCandidateConstructionPointsSurplus(U["fTolerance"], U[

→˓"sRefinementType"])
231 # else:
232 # raise ValueError("Unknown refinement string")
233

234 # Asynchronous helper and state variables.
235 num_dims = grid.getNumDimensions()
236 num_completed = 0
237 offset = 0
238 queued_pts = np.empty((0, num_dims), dtype="float")

(continues on next page)

220 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

239 queued_ids = np.empty(0, dtype="int")
240

241 # First run.
242 grid.beginConstruction()
243 init_pts = get_refined_points(grid, U)
244 queued_pts, queued_ids, offset = get_state(queued_pts, queued_ids, offset, new_

→˓points=init_pts, tol=tol)
245 H0 = np.zeros(init_pts.shape[0], dtype=gen_specs["out"])
246 H0["x"] = init_pts
247 H0["sim_id"] = np.arange(init_pts.shape[0], dtype="int")
248 H0["priority"] = np.flip(H0["sim_id"])
249 tag, Work, calc_in = ps.send_recv(H0)
250

251 # Subsequent runs.
252 while tag not in [STOP_TAG, PERSIS_STOP]:
253 # Parse the points returned by the allocator.
254 num_completed += calc_in["x"].shape[0]
255 queued_pts, queued_ids, offset = get_state(
256 queued_pts, queued_ids, offset, completed_points=calc_in["x"], tol=tol
257)
258

259 # Compute the next batch of points (if they exist).
260 new_pts = np.empty((0, num_dims), dtype="float")
261 refined_pts = np.empty((0, num_dims), dtype="float")
262 refined_ord = np.empty(0, dtype="int")
263 if grid.getNumLoaded() < 1000 or num_completed > 0.2 * grid.getNumLoaded():
264 # A copy is needed because the data in the calc_in arrays are not contiguous.
265 grid.loadConstructedPoint(np.copy(calc_in["x"]), np.copy(calc_in["f"]))
266 if "tasmanian_checkpoint_file" in U:
267 grid.write(U["tasmanian_checkpoint_file"])
268 refined_pts = get_refined_points(grid, U)
269 # If the refined points are empty, then there is a stopping condition␣

→˓internal to the
270 # Tasmanian sparse grid that is being triggered by the loaded points.
271 if refined_pts.size == 0:
272 break
273 refined_ord = np.lexsort(np.rot90(refined_pts))
274 delete_ind = get_2D_duplicate_indices(refined_pts, queued_pts, x_ord=refined_

→˓ord, tol=tol)
275 new_pts = np.delete(refined_pts, delete_ind, axis=0)
276

277 if new_pts.shape[0] > 0:
278 # Update the state variables with the refined points and update the queue in␣

→˓the allocator.
279 num_completed = 0
280 queued_pts, queued_ids, offset = get_state(queued_pts, queued_ids, offset,␣

→˓new_points=new_pts, tol=tol)
281 H0 = get_H0(gen_specs, refined_pts, refined_ord, queued_pts, queued_ids,␣

→˓tol=tol)
282 tag, Work, calc_in = ps.send_recv(H0)
283 else:
284 tag, Work, calc_in = ps.recv()

(continues on next page)

6.5. Example User Functions and Calling Scripts 221

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

285

286 return [], persis_info, FINISHED_PERSISTENT_GEN_TAG
287

288

289 def get_sparse_grid_specs(user_specs, sim_f, num_dims, num_outputs=1, mode="batched"):
290 """
291 Helper function that generates the simulator, generator, and allocator specs as well␣

→˓as the
292 persis_info dictionary to ensure that they are compatible with the custom generators␣

→˓in this
293 script. The outputs should be used in the main libE() call.
294

295 INPUTS:
296 user_specs (dict) : a dictionary of user specs that is needed in the␣

→˓generator specs;
297 expects the key "tasmanian_init" whose value is a 0-

→˓argument lambda
298 that initializes an appropriate Tasmanian sparse grid␣

→˓object.
299

300 sim_f (func) : a lambda function that takes in generator outputs␣
→˓(simulator inputs)

301 and returns simulator outputs.
302

303 num_dims (int) : number of model inputs.
304

305 num_outputs (int) : number of model outputs.
306

307 mode (string) : can either be "batched" or "async".
308

309 OUTPUTS:
310 sim_specs (dict) : a dictionary of simulation specs and also one of the inputs␣

→˓of libE().
311

312 gen_specs (dict) : a dictionary of generator specs and also one of the inputs␣
→˓of libE().

313

314 alloc_specs (dict) : a dictionary of allocation specs and also one of the inputs␣
→˓of libE().

315

316 persis_info (dict) : a dictionary containing common information that is passed␣
→˓to all

317 workers and also one of the inputs of libE().
318

319 """
320

321 assert "tasmanian_init" in user_specs
322 assert mode in ["batched", "async"]
323

324 sim_specs = {
325 "sim_f": sim_f,
326 "in": ["x"],

(continues on next page)

222 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

327 }
328 gen_out = [
329 ("x", float, (num_dims,)),
330 ("sim_id", int),
331 ("priority", int),
332]
333 gen_specs = {
334 "persis_in": [t[0] for t in gen_out] + ["f"],
335 "out": gen_out,
336 "user": user_specs,
337 }
338 alloc_specs = {
339 "alloc_f": allocf,
340 "user": {},
341 }
342

343 if mode == "batched":
344 gen_specs["gen_f"] = sparse_grid_batched
345 sim_specs["out"] = [("f", float, (num_outputs,))]
346 if mode == "async":
347 gen_specs["gen_f"] = sparse_grid_async
348 sim_specs["out"] = [("x", float, (num_dims,)), ("f", float, (num_outputs,))]
349 alloc_specs["user"]["active_recv_gen"] = True
350 alloc_specs["user"]["async_return"] = True
351

352 nworkers, _, _, _ = parse_args()
353 persis_info = {}
354 for i in range(nworkers + 1):
355 persis_info[i] = {"worker_num": i}
356

357 return sim_specs, gen_specs, alloc_specs, persis_info

persistent_fd_param_finder

persistent_fd_param_finder.fd_param_finder(H, persis_info, gen_specs, libE_info)
This generation function loops through a set of suitable finite difference parameters for a mapping F from R^n
to R^m.

See also:

test_persistent_fd_param_finder.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/
tests/regression_tests/test_persistent_fd_param_finder.py>`_ # noqa

6.5. Example User Functions and Calling Scripts 223

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py

libEnsemble User Manual, Release 1.3.0+dev

persistent_surmise

Required: Surmise

Note that currently the github fork https://github.com/mosesyhc/surmise should be used:

pip install --upgrade git+https://github.com/bandframework/surmise.git@develop

The Borehole Calibration tutorial uses this generator as an example of the capability to cancel pending simu-
lations. This module contains a simple calibration example using the Surmise package.

persistent_surmise_calib.surmise_calib(H, persis_info, gen_specs, libE_info)
Generator to select and obviate parameters for calibration.

6.5.2 Simulation Functions

Below are example simulation functions available in libEnsemble. Most of these demonstrate an inexpensive algorithm
and do not launch tasks (user applications). To see an example of a simulation function launching tasks, see the
Electrostatic Forces tutorial.

Important: See the API for simulation functions here.

six_hump_camel

This module contains various versions that evaluate the six-hump camel function.

Six-hump camel function is documented here:
https://www.sfu.ca/~ssurjano/camel6.html

six_hump_camel.six_hump_camel(H, persis_info, sim_specs, libE_info)
Input Fields: ['x']

Output Datatypes: [('f', <class 'float'>)]

Evaluates the six hump camel function for a collection of points given in H["x"]. Additionally evaluates the
gradient if "grad" is a field in sim_specs["out"] and pauses for sim_specs["user"]["pause_time"]]
if defined.

See also:

test_uniform_sampling.py # noqa

six_hump_camel.six_hump_camel_simple(x, _, sim_specs)
Input Fields: ['x']

Output Datatypes: [('f', <class 'float'>)]

Evaluates the six hump camel function for a single point x.

See also:

test_fast_alloc.py # noqa

six_hump_camel.persistent_six_hump_camel(H, persis_info, sim_specs, libE_info)
Similar to six_hump_camel, but runs in persistent mode.

224 Chapter 6. Appendices

https://surmise.readthedocs.io/en/latest/index.html
https://github.com/mosesyhc/surmise
https://www.sfu.ca/~ssurjano/camel6.html
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_fast_alloc.py

libEnsemble User Manual, Release 1.3.0+dev

six_hump_camel.py

1 """
2 This module contains various versions that evaluate the six-hump camel function.
3

4 Six-hump camel function is documented here:
5 https://www.sfu.ca/~ssurjano/camel6.html
6

7 """
8

9 __all__ = [
10 "six_hump_camel",
11 "six_hump_camel_simple",
12 "persistent_six_hump_camel",
13]
14

15 import sys
16 import time
17

18 import numpy as np
19

20 from libensemble.message_numbers import EVAL_SIM_TAG, FINISHED_PERSISTENT_SIM_TAG,␣
→˓PERSIS_STOP, STOP_TAG

21 from libensemble.specs import input_fields, output_data
22 from libensemble.tools.persistent_support import PersistentSupport
23

24

25 @input_fields(["x"])
26 @output_data([("f", float)])
27 def six_hump_camel(H, persis_info, sim_specs, libE_info):
28 """
29 Evaluates the six hump camel function for a collection of points given in ``H["x"]``.
30 Additionally evaluates the gradient if ``"grad"`` is a field in
31 ``sim_specs["out"]`` and pauses for ``sim_specs["user"]["pause_time"]]`` if
32 defined.
33

34 .. seealso::
35 `test_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/

→˓develop/libensemble/tests/functionality_tests/test_uniform_sampling.py>`_ # noqa
36 """
37

38 batch = len(H["x"])
39 H_o = np.zeros(batch, dtype=sim_specs["out"])
40

41 for i, x in enumerate(H["x"]):
42 H_o["f"][i] = six_hump_camel_func(x)
43

44 if "grad" in H_o.dtype.names:
45 H_o["grad"][i] = six_hump_camel_grad(x)
46

47 if "user" in sim_specs and "pause_time" in sim_specs["user"]:
48 time.sleep(sim_specs["user"]["pause_time"])
49

(continues on next page)

6.5. Example User Functions and Calling Scripts 225

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

50 return H_o, persis_info
51

52

53 @input_fields(["x"])
54 @output_data([("f", float)])
55 def six_hump_camel_simple(x, _, sim_specs):
56 """
57 Evaluates the six hump camel function for a single point ``x``.
58

59 .. seealso::
60 `test_fast_alloc.py <https://github.com/Libensemble/libensemble/blob/develop/

→˓libensemble/tests/functionality_tests/test_fast_alloc.py>`_ # noqa
61 """
62

63 H_o = np.zeros(1, dtype=sim_specs["out"])
64

65 H_o["f"] = six_hump_camel_func(x[0][0][:2]) # Ignore more than 2 entries of x
66

67 if sim_specs["user"].get("pause_time"):
68 time.sleep(sim_specs["user"]["pause_time"])
69

70 if sim_specs["user"].get("rand"):
71 H_o["f"] += np.random.normal(0, 1)
72

73 return H_o
74

75

76 def persistent_six_hump_camel(H, persis_info, sim_specs, libE_info):
77 """
78 Similar to ``six_hump_camel``, but runs in persistent mode.
79 """
80

81 ps = PersistentSupport(libE_info, EVAL_SIM_TAG)
82

83 # Either start with a work item to process - or just start and wait for data
84 if H.size > 0:
85 tag = None
86 Work = None
87 calc_in = H
88 else:
89 tag, Work, calc_in = ps.recv()
90

91 while tag not in [STOP_TAG, PERSIS_STOP]:
92 # calc_in: This should either be a function (unpack_work ?) or included/unpacked␣

→˓in ps.recv/ps.send_recv.
93 if Work is not None:
94 persis_info = Work.get("persis_info", persis_info)
95 libE_info = Work.get("libE_info", libE_info)
96

97 # Call standard six_hump_camel sim
98 H_o, persis_info = six_hump_camel(calc_in, persis_info, sim_specs, libE_info)
99

(continues on next page)

226 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

100 tag, Work, calc_in = ps.send_recv(H_o)
101

102 final_return = None
103

104 # Overwrite final point - for testing only
105 if sim_specs["user"].get("replace_final_fields", 0):
106 calc_in = np.ones(1, dtype=[("x", float, (2,))])
107 H_o, persis_info = six_hump_camel(calc_in, persis_info, sim_specs, libE_info)
108 final_return = H_o
109

110 return final_return, persis_info, FINISHED_PERSISTENT_SIM_TAG
111

112

113 def six_hump_camel_func(x):
114 """
115 Definition of the six-hump camel
116 """
117 x1 = x[0]
118 x2 = x[1]
119 term1 = (4 - 2.1 * x1**2 + (x1**4) / 3) * x1**2
120 term2 = x1 * x2
121 term3 = (-4 + 4 * x2**2) * x2**2
122

123 return term1 + term2 + term3
124

125

126 def six_hump_camel_grad(x):
127 """
128 Definition of the six-hump camel gradient
129 """
130

131 x1 = x[0]
132 x2 = x[1]
133 grad = np.zeros(2)
134

135 grad[0] = 2.0 * (x1**5 - 4.2 * x1**3 + 4.0 * x1 + 0.5 * x2)
136 grad[1] = x1 + 16 * x2**3 - 8 * x2
137

138 return grad
139

140

141 if __name__ == "__main__":
142 x = (float(sys.argv[1]), float(sys.argv[2]))
143 result = six_hump_camel_func(x)
144 print(result)

6.5. Example User Functions and Calling Scripts 227

libEnsemble User Manual, Release 1.3.0+dev

chwirut

chwirut1.chwirut_eval(H, _, sim_specs)
Evaluates the chwirut objective function at a given set of points in H["x"]. If "obj_component" is a field in
sim_specs["out"], only that component of the objective will be evaluated. Otherwise, all 214 components
are evaluated and returned in the "fvec" field.

See also:

test_persistent_aposmm_pounders.py # noqa for an example where the entire fvec is computed each call.

See also:

test_uniform_sampling_one_residual_at_a_time.py # noqa for an example where one component of fvec is com-
puted per call

noisy_vector_mapping

This module contains a test noisy function

noisy_vector_mapping.func_wrapper(H, persis_info, sim_specs, libE_info)
Wraps an objective function

See also:

test_persistent_fd_param_finder.py <https://github.com/Libensemble/libensemble/blob/develop/libensemble/
tests/regression_tests/test_persistent_fd_param_finder.py>`_ # noqa

noisy_vector_mapping.noisy_function(x)

noisy_vector_mapping.py

1 """
2 This module contains a test noisy function
3 """
4

5 import numpy as np
6 from numpy import cos, sin
7 from numpy.linalg import norm
8

9

10 def func_wrapper(H, persis_info, sim_specs, libE_info):
11 """
12 Wraps an objective function
13

14 .. seealso::
15 `test_persistent_fd_param_finder.py` <https://github.com/Libensemble/libensemble/

→˓blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py>`_
→˓# noqa

16 """
17

18 batch = len(H["x"])
19 H0 = np.zeros(batch, dtype=sim_specs["out"])
20

21 for i, x in enumerate(H["x"]):
(continues on next page)

228 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_aposmm_pounders.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_one_residual_at_a_time.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

22 H0["f_val"][i] = noisy_function(x)[H["f_ind"][i]]
23

24 return H0, persis_info
25

26

27 def noisy_function(x):
28 """ """
29 x1 = x[0]
30 x2 = x[1]
31 term1 = (4 - 2.1 * x1**2 + (x1**4) / 3) * x1**2
32 term2 = x1 * x2
33 term3 = (-4 + 4 * x2**2) * x2**2
34

35 phi1 = 0.9 * sin(100 * norm(x, 1)) * cos(100 * norm(x, np.inf)) + 0.1 * cos(norm(x,␣
→˓2))

36 phi1 = phi1 * (4 * phi1**2 - 3)
37

38 phi2 = 0.8 * sin(100 * norm(x, 1)) * cos(100 * norm(x, np.inf)) + 0.2 * cos(norm(x,␣
→˓2))

39 phi2 = phi2 * (4 * phi2**2 - 3)
40

41 phi3 = 0.7 * sin(100 * norm(x, 1)) * cos(100 * norm(x, np.inf)) + 0.3 * cos(norm(x,␣
→˓2))

42 phi3 = phi3 * (4 * phi3**2 - 3)
43

44 F = np.zeros(3)
45 F[0] = (1 + 1e-1 * phi1) * term1
46 F[1] = (1 + 1e-2 * phi2) * term2
47 F[2] = (1 + 1e-3 * phi3) * term3
48

49 return F

periodic_func

This module contains a periodic test function

periodic_func.func_wrapper(H, persis_info, sim_specs, libE_info)
Wraps an objective function

periodic_func.periodic_func(x)
This function is periodic

6.5. Example User Functions and Calling Scripts 229

libEnsemble User Manual, Release 1.3.0+dev

borehole

borehole.borehole(H, persis_info, sim_specs, _)
Wraps the borehole function

borehole.borehole_func(x)
This evaluates the Borehole function for n-by-8 input matrix x, and returns the flow rate through the Borehole.
(Harper and Gupta, 1983) input:

Parameters
x (numpy.typing.NDArray) –

x[:,0]: Tu, transmissivity of upper aquifer (m^2/year)
x[:,1]: Tl, transmissivity of lower aquifer (m^2/year)
x[:,2]: Hu, potentiometric head of upper aquifer (m)
x[:,3]: Hl, potentiometric head of lower aquifer (m)
x[:,4]: r, radius of influence (m)
x[:,5]: rw, radius of borehole (m)
x[:,6]: Kw, hydraulic conductivity of borehole (m/year)
x[:,7]: L, length of borehole (m)

Returns
f – vector of dimension (n, 1): flow rate through the Borehole (m^3/year)

Return type
numpy.ndarray

borehole.gen_borehole_input(n)
Generates and returns n inputs for the Borehole function, according to distributions outlined in Harper and Gupta
(1983).

input:
n: number of input to generate

output:
matrix of (n, 8), input to borehole_func(x) function

executor_hworld

executor_hworld.executor_hworld(H, _, sim_specs, info)
Input Fields: ['x']

Output Datatypes: [('f', <class 'float'>), ('cstat', <class 'int'>)]

Tests launching and polling task and exiting on task finish

executor_hworld.py

1 import numpy as np
2

3 from libensemble.message_numbers import (
4 MAN_SIGNAL_FINISH,
5 TASK_FAILED,
6 UNSET_TAG,
7 WORKER_DONE,

(continues on next page)

230 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

8 WORKER_KILL_ON_ERR,
9 WORKER_KILL_ON_TIMEOUT,

10)
11 from libensemble.sim_funcs.six_hump_camel import six_hump_camel_func
12 from libensemble.specs import input_fields, output_data
13

14 __all__ = ["executor_hworld"]
15

16 # Alt send values through X
17 sim_ended_count = 0
18

19

20 def custom_polling_loop(exctr, task, timeout_sec=5.0, delay=0.3):
21 import time
22

23 calc_status = UNSET_TAG # Sim func determines status of libensemble calc - returned␣
→˓to worker

24

25 while task.runtime < timeout_sec:
26 time.sleep(delay)
27

28 if exctr.manager_kill_received():
29 exctr.kill(task)
30 calc_status = MAN_SIGNAL_FINISH # Worker will pick this up and close down
31 print(f"Task {task.id} killed by manager on worker {exctr.workerID}")
32 break
33

34 task.poll()
35 if task.finished:
36 break
37 elif task.state == "RUNNING":
38 print(f"Task {task.id} still running on worker {exctr.workerID}")
39

40 if task.stdout_exists():
41 if "Error" in task.read_stdout():
42 print(
43 "Found (deliberate) Error in output file - cancelling " f"task {task.

→˓id} on worker {exctr.workerID}"
44)
45 exctr.kill(task)
46 calc_status = WORKER_KILL_ON_ERR
47 break
48

49 # After exiting loop
50 if task.finished:
51 print(f"Task {task.id} done on worker {exctr.workerID}")
52 # Fill in calc_status if not already
53 if calc_status == UNSET_TAG:
54 if task.state == "FINISHED": # Means finished successfully
55 calc_status = WORKER_DONE
56 elif task.state == "FAILED":
57 calc_status = TASK_FAILED

(continues on next page)

6.5. Example User Functions and Calling Scripts 231

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

58

59 else:
60 # assert task.state == 'RUNNING', "task.state expected to be RUNNING. Returned: "␣

→˓+ str(task.state)
61 print(f"Task {task.id} timed out - killing on worker {exctr.workerID}")
62 exctr.kill(task)
63 if task.finished:
64 print(f"Task {task.id} done on worker {exctr.workerID}")
65 calc_status = WORKER_KILL_ON_TIMEOUT
66

67 return task, calc_status
68

69

70 @input_fields(["x"])
71 @output_data([("f", float), ("cstat", int)])
72 def executor_hworld(H, _, sim_specs, info):
73 """
74 Tests launching and polling task and exiting on task finish
75 """
76

77 exctr = info["executor"]
78 cores = sim_specs["user"]["cores"]
79 ELAPSED_TIMEOUT = "elapsed_timeout" in sim_specs["user"]
80

81 wait = False
82 args_for_sim = "sleep 1"
83 calc_status = UNSET_TAG
84

85 batch = len(H["x"])
86 H_o = np.zeros(batch, dtype=sim_specs["out"])
87

88 if "six_hump_camel" not in exctr.default_app("sim").full_path:
89 global sim_ended_count
90 sim_ended_count += 1
91 print("sim_ended_count", sim_ended_count, flush=True)
92

93 if ELAPSED_TIMEOUT:
94 args_for_sim = "sleep 60" # Manager kill - if signal received else completes
95 timeout = 65.0
96

97 else:
98 timeout = 6.0
99 launch_shc = False

100

101 if sim_ended_count == 1:
102 args_for_sim = "sleep 1" # Should finish
103 elif sim_ended_count == 2:
104 args_for_sim = "sleep 1 Error" # Worker kill on error
105 elif sim_ended_count == 3:
106 wait = True
107 args_for_sim = "sleep 1" # Should finish
108 launch_shc = True

(continues on next page)

232 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

109 elif sim_ended_count == 4:
110 args_for_sim = "sleep 8" # Worker kill on timeout
111 timeout = 1.0
112 elif sim_ended_count == 5:
113 args_for_sim = "sleep 2 Fail" # Manager kill - if signal received else␣

→˓completes
114

115 task = exctr.submit(calc_type="sim", num_procs=cores, app_args=args_for_sim,␣
→˓hyperthreads=True)

116

117 if wait:
118 task.wait()
119 if not task.finished:
120 calc_status = UNSET_TAG
121 if task.state == "FINISHED":
122 calc_status = WORKER_DONE
123 elif task.state == "FAILED":
124 calc_status = TASK_FAILED
125

126 else:
127 if sim_ended_count >= 2:
128 calc_status = exctr.polling_loop(task, timeout=timeout, delay=0.3, poll_

→˓manager=True)
129 if sim_ended_count == 2 and task.stdout_exists() and "Error" in task.

→˓read_stdout():
130 calc_status = WORKER_KILL_ON_ERR
131 else:
132 task, calc_status = custom_polling_loop(exctr, task, timeout)
133

134 else:
135 launch_shc = True
136 calc_status = UNSET_TAG
137

138 # Comparing six_hump_camel output, directly called vs. submitted as app
139 for i, x in enumerate(H["x"]):
140 H_o["f"][i] = six_hump_camel_func(x)
141 if launch_shc:
142 # Test launching a named app.
143 app_args = " ".join(str(val) for val in list(x[:]))
144 task = exctr.submit(app_name="six_hump_camel", num_procs=1, app_args=app_

→˓args)
145 task.wait()
146 output = np.float64(task.read_stdout())
147 assert np.isclose(H_o["f"][i], output)
148 calc_status = WORKER_DONE
149

150 # This is just for testing at calling script level - status of each task
151 H_o["cstat"] = calc_status
152

153 return H_o, calc_status

6.5. Example User Functions and Calling Scripts 233

libEnsemble User Manual, Release 1.3.0+dev

6.5.3 Allocation Functions

Below are example allocation functions available in libEnsemble.

Important: See the API for allocation functions here.

Note: The default allocation function is give_sim_work_first.

give_sim_work_first

give_sim_work_first.give_sim_work_first(W , H, sim_specs, gen_specs, alloc_specs, persis_info,
libE_info)

Decide what should be given to workers. This allocation function gives any available simula-
tion work first, and only when all simulations are completed or running does it start (at most
alloc_specs["user"]["num_active_gens"]) generator instances.

Allows for a alloc_specs["user"]["batch_mode"] where no generation work is given out unless all entries
in H are returned.

Can give points in highest priority, if "priority" is a field in H. If al-
loc_specs[“user”][“give_all_with_same_priority”] is set to True, then all points with the same priority
value are given as a batch to the sim.

Workers performing sims will be assigned resources given in H[“resource_sets”] this field exists, else defaulting
to one. Workers performing gens are assigned resource_sets given by persis_info[“gen_resources”] or zero.

This is the default allocation function if one is not defined.

tags: alloc, default, batch, priority

See also:

test_uniform_sampling.py # noqa

Parameters

• W (ndarray[Any, dtype[_ScalarType_co]])

• H (ndarray[Any, dtype[_ScalarType_co]])

• sim_specs (dict)

• gen_specs (dict)

• alloc_specs (dict)

• persis_info (dict)

• libE_info (dict)

Return type
Tuple[dict]

234 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling.py

libEnsemble User Manual, Release 1.3.0+dev

give_sim_work_first.py

1 import time
2 from typing import Tuple
3

4 import numpy as np
5 import numpy.typing as npt
6

7 from libensemble.tools.alloc_support import AllocSupport, InsufficientFreeResources
8

9

10 def give_sim_work_first(
11 W: npt.NDArray,
12 H: npt.NDArray,
13 sim_specs: dict,
14 gen_specs: dict,
15 alloc_specs: dict,
16 persis_info: dict,
17 libE_info: dict,
18) -> Tuple[dict]:
19 """
20 Decide what should be given to workers. This allocation function gives any
21 available simulation work first, and only when all simulations are
22 completed or running does it start (at most ``alloc_specs["user"]["num_active_gens

→˓"]``)
23 generator instances.
24

25 Allows for a ``alloc_specs["user"]["batch_mode"]`` where no generation
26 work is given out unless all entries in ``H`` are returned.
27

28 Can give points in highest priority, if ``"priority"`` is a field in ``H``.
29 If alloc_specs["user"]["give_all_with_same_priority"] is set to True, then
30 all points with the same priority value are given as a batch to the sim.
31

32 Workers performing sims will be assigned resources given in H["resource_sets"]
33 this field exists, else defaulting to one. Workers performing gens are
34 assigned resource_sets given by persis_info["gen_resources"] or zero.
35

36 This is the default allocation function if one is not defined.
37

38 tags: alloc, default, batch, priority
39

40 .. seealso::
41 `test_uniform_sampling.py <https://github.com/Libensemble/libensemble/blob/

→˓develop/libensemble/tests/functionality_tests/test_uniform_sampling.py>`_ # noqa
42 """
43

44 user = alloc_specs.get("user", {})
45

46 if "cancel_sims_time" in user:
47 # Cancel simulations that are taking too long
48 rows = np.where(np.logical_and.reduce((H["sim_started"], ~H["sim_ended"], ~H[

→˓"cancel_requested"])))[0]
(continues on next page)

6.5. Example User Functions and Calling Scripts 235

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

49 inds = time.time() - H["sim_started_time"][rows] > user["cancel_sims_time"]
50 to_request_cancel = rows[inds]
51 for row in to_request_cancel:
52 H[row]["cancel_requested"] = True
53

54 if libE_info["sim_max_given"] or not libE_info["any_idle_workers"]:
55 return {}, persis_info
56

57 # Initialize alloc_specs["user"] as user.
58 batch_give = user.get("give_all_with_same_priority", False)
59 gen_in = gen_specs.get("in", [])
60

61 manage_resources = libE_info["use_resource_sets"]
62 support = AllocSupport(W, manage_resources, persis_info, libE_info)
63 gen_count = support.count_gens()
64 Work = {}
65

66 points_to_evaluate = ~H["sim_started"] & ~H["cancel_requested"]
67

68 if np.any(points_to_evaluate):
69 for wid in support.avail_worker_ids(gen_workers=False):
70 sim_ids_to_send = support.points_by_priority(H, points_avail=points_to_

→˓evaluate, batch=batch_give)
71 try:
72 Work[wid] = support.sim_work(wid, H, sim_specs["in"], sim_ids_to_send,␣

→˓persis_info.get(wid))
73 except InsufficientFreeResources:
74 break
75 points_to_evaluate[sim_ids_to_send] = False
76 if not np.any(points_to_evaluate):
77 break
78 else:
79 for wid in support.avail_worker_ids(gen_workers=True):
80 # Allow at most num_active_gens active generator instances
81 if gen_count >= user.get("num_active_gens", gen_count + 1):
82 break
83

84 # Do not start gen instances in batch mode if workers still working
85 if user.get("batch_mode") and not support.all_sim_ended(H):
86 break
87

88 # Give gen work
89 return_rows = range(len(H)) if gen_in else []
90 try:
91 Work[wid] = support.gen_work(wid, gen_in, return_rows, persis_info.

→˓get(wid))
92 except InsufficientFreeResources:
93 break
94 gen_count += 1
95

96 return Work, persis_info

236 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

fast_alloc

fast_alloc.give_sim_work_first(W , H, sim_specs, gen_specs, alloc_specs, persis_info, libE_info)
This allocation function gives (in order) entries in H to idle workers to evaluate in the simulation function. The
fields in sim_specs["in"] are given. If all entries in H have been given a be evaluated, a worker is told to call the
generator function, provided this wouldn’t result in more than alloc_specs["user"]["num_active_gen"]
active generators.

This fast_alloc variation of give_sim_work_first is useful for cases that simply iterate through H, issuing evalu-
ations in order and, in particular, is likely to be faster if there will be many short simulation evaluations, given
that this function contains fewer column length operations.

tags: alloc, simple, fast

See also:

test_fast_alloc.py # noqa

fast_alloc.py

1 from libensemble.tools.alloc_support import AllocSupport, InsufficientFreeResources
2

3

4 def give_sim_work_first(W, H, sim_specs, gen_specs, alloc_specs, persis_info, libE_info):
5 """
6 This allocation function gives (in order) entries in ``H`` to idle workers
7 to evaluate in the simulation function. The fields in ``sim_specs["in"]``
8 are given. If all entries in `H` have been given a be evaluated, a worker
9 is told to call the generator function, provided this wouldn't result in

10 more than ``alloc_specs["user"]["num_active_gen"]`` active generators.
11

12 This fast_alloc variation of give_sim_work_first is useful for cases that
13 simply iterate through H, issuing evaluations in order and, in particular,
14 is likely to be faster if there will be many short simulation evaluations,
15 given that this function contains fewer column length operations.
16

17 tags: alloc, simple, fast
18

19 .. seealso::
20 `test_fast_alloc.py <https://github.com/Libensemble/libensemble/blob/develop/

→˓libensemble/tests/functionality_tests/test_fast_alloc.py>`_ # noqa
21 """
22

23 if libE_info["sim_max_given"] or not libE_info["any_idle_workers"]:
24 return {}, persis_info
25

26 user = alloc_specs.get("user", {})
27 manage_resources = libE_info["use_resource_sets"]
28

29 support = AllocSupport(W, manage_resources, persis_info, libE_info)
30

31 gen_count = support.count_gens()
32 Work = {}
33 gen_in = gen_specs.get("in", [])

(continues on next page)

6.5. Example User Functions and Calling Scripts 237

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_fast_alloc.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

34

35 # Give sim work if possible
36 for wid in support.avail_worker_ids(gen_workers=False):
37 persis_info = support.skip_canceled_points(H, persis_info)
38 if persis_info["next_to_give"] < len(H):
39 try:
40 Work[wid] = support.sim_work(wid, H, sim_specs["in"], [persis_info["next_

→˓to_give"]], [])
41 except InsufficientFreeResources:
42 break
43 persis_info["next_to_give"] += 1
44

45 # Give gen work if possible
46 if persis_info["next_to_give"] >= len(H):
47 for wid in support.avail_worker_ids(gen_workers=True):
48 if wid not in Work and gen_count < user.get("num_active_gens", gen_count +␣

→˓1):
49 return_rows = range(len(H)) if gen_in else []
50 try:
51 Work[wid] = support.gen_work(wid, gen_in, return_rows, persis_info.

→˓get(wid))
52 except InsufficientFreeResources:
53 break
54 gen_count += 1
55 persis_info["total_gen_calls"] += 1
56

57 return Work, persis_info

start_only_persistent

start_only_persistent.only_persistent_gens(W , H, sim_specs, gen_specs, alloc_specs, persis_info,
libE_info)

This allocation function will give simulation work if possible, but otherwise start up to
alloc_specs["user"]["num_active_gens"] persistent generators (defaulting to one).

By default, evaluation results are given back to the generator once all generated points have been returned from the
simulation evaluation. If alloc_specs["user"]["async_return"] is set to True, then any returned points
are given back to the generator.

If any workers are marked as zero_resource_workers, then these will only be used for generators.

If any of the persistent generators has exited, then ensemble shutdown is triggered.

User options:

To be provided in calling script: E.g., alloc_specs["user"]["async_return"] = True

init_sample_size: int, optional
Initial sample size - always return in batch. Default: 0

num_active_gens: int, optional
Maximum number of persistent generators to start. Default: 1

async_return: Boolean, optional
Return results to gen as they come in (after sample). Default: False (batch return).

238 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

active_recv_gen: Boolean, optional
Create gen in active receive mode. If True, the manager does not need to wait for a return from the generator
before sending further returned points. Default: False

tags: alloc, batch, async, persistent, priority

See also:

test_persistent_uniform_sampling.py # noqa test_persistent_uniform_sampling_async.py # noqa
test_persistent_surmise_calib.py # noqa test_persistent_uniform_gen_decides_stop.py # noqa

start_only_persistent.py

1 import numpy as np
2

3 from libensemble.message_numbers import EVAL_GEN_TAG, EVAL_SIM_TAG
4 from libensemble.tools.alloc_support import AllocSupport, InsufficientFreeResources
5

6

7 def only_persistent_gens(W, H, sim_specs, gen_specs, alloc_specs, persis_info, libE_
→˓info):

8 """
9 This allocation function will give simulation work if possible, but

10 otherwise start up to ``alloc_specs["user"]["num_active_gens"]``
11 persistent generators (defaulting to one).
12

13 By default, evaluation results are given back to the generator once
14 all generated points have been returned from the simulation evaluation.
15 If ``alloc_specs["user"]["async_return"]`` is set to True, then any
16 returned points are given back to the generator.
17

18 If any workers are marked as zero_resource_workers, then these will only
19 be used for generators.
20

21 If any of the persistent generators has exited, then ensemble shutdown
22 is triggered.
23

24 **User options**:
25

26 To be provided in calling script: E.g., ``alloc_specs["user"]["async_return"] = True``
27

28 init_sample_size: int, optional
29 Initial sample size - always return in batch. Default: 0
30

31 num_active_gens: int, optional
32 Maximum number of persistent generators to start. Default: 1
33

34 async_return: Boolean, optional
35 Return results to gen as they come in (after sample). Default: False (batch␣

→˓return).
36

37 active_recv_gen: Boolean, optional
38 Create gen in active receive mode. If True, the manager does not need to wait
39 for a return from the generator before sending further returned points.

(continues on next page)

6.5. Example User Functions and Calling Scripts 239

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling_async.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_surmise_calib.py
https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_gen_decides_stop.py

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

40 Default: False
41

42 tags: alloc, batch, async, persistent, priority
43

44 .. seealso::
45 `test_persistent_uniform_sampling.py <https://github.com/Libensemble/libensemble/

→˓blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_sampling.py>
→˓`_ # noqa

46 `test_persistent_uniform_sampling_async.py <https://github.com/Libensemble/
→˓libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_
→˓sampling_async.py>`_ # noqa

47 `test_persistent_surmise_calib.py <https://github.com/Libensemble/libensemble/
→˓blob/develop/libensemble/tests/regression_tests/test_persistent_surmise_calib.py>`_ #␣
→˓noqa

48 `test_persistent_uniform_gen_decides_stop.py <https://github.com/Libensemble/
→˓libensemble/blob/develop/libensemble/tests/functionality_tests/test_persistent_uniform_
→˓gen_decides_stop.py>`_ # noqa

49 """
50

51 if libE_info["sim_max_given"] or not libE_info["any_idle_workers"]:
52 return {}, persis_info
53

54 # Initialize alloc_specs["user"] as user.
55 user = alloc_specs.get("user", {})
56 manage_resources = libE_info["use_resource_sets"]
57

58 active_recv_gen = user.get("active_recv_gen", False) # Persistent gen can handle␣
→˓irregular communications

59 init_sample_size = user.get("init_sample_size", 0) # Always batch return until this␣
→˓many evals complete

60 batch_give = user.get("give_all_with_same_priority", False)
61

62 support = AllocSupport(W, manage_resources, persis_info, libE_info)
63 gen_count = support.count_persis_gens()
64 Work = {}
65

66 # Asynchronous return to generator
67 async_return = user.get("async_return", False) and sum(H["sim_ended"]) >= init_

→˓sample_size
68

69 if gen_count < persis_info.get("num_gens_started", 0):
70 # When a persistent worker is done, trigger a shutdown (returning exit condition␣

→˓of 1)
71 return Work, persis_info, 1
72

73 # Give evaluated results back to a running persistent gen
74 for wid in support.avail_worker_ids(persistent=EVAL_GEN_TAG, active_recv=active_recv_

→˓gen):
75 gen_inds = H["gen_worker"] == wid
76 returned_but_not_given = np.logical_and.reduce((H["sim_ended"], ~H["gen_informed

→˓"], gen_inds))
77 if np.any(returned_but_not_given):

(continues on next page)

240 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

78 if async_return or support.all_sim_ended(H, gen_inds):
79 point_ids = np.where(returned_but_not_given)[0]
80 Work[wid] = support.gen_work(
81 wid,
82 gen_specs["persis_in"],
83 point_ids,
84 persis_info.get(wid),
85 persistent=True,
86 active_recv=active_recv_gen,
87)
88 returned_but_not_given[point_ids] = False
89

90 # Now the give_sim_work_first part
91 points_to_evaluate = ~H["sim_started"] & ~H["cancel_requested"]
92 avail_workers = support.avail_worker_ids(persistent=False, zero_resource_

→˓workers=False, gen_workers=False)
93 if user.get("alt_type"):
94 avail_workers = list(
95 set(support.avail_worker_ids(persistent=False, zero_resource_workers=False))
96 | set(support.avail_worker_ids(persistent=EVAL_SIM_TAG, zero_resource_

→˓workers=False))
97)
98 for wid in avail_workers:
99 if not np.any(points_to_evaluate):

100 break
101

102 sim_ids_to_send = support.points_by_priority(H, points_avail=points_to_evaluate,␣
→˓batch=batch_give)

103

104 try:
105 if user.get("alt_type"):
106 Work[wid] = support.sim_work(
107 wid, H, sim_specs["in"], sim_ids_to_send, persis_info.get(wid),␣

→˓persistent=True
108)
109 else:
110 Work[wid] = support.sim_work(wid, H, sim_specs["in"], sim_ids_to_send,␣

→˓persis_info.get(wid))
111 except InsufficientFreeResources:
112 break
113

114 points_to_evaluate[sim_ids_to_send] = False
115

116 # Start persistent gens if no worker to give out. Uses zero_resource_workers if␣
→˓defined.

117 if not np.any(points_to_evaluate):
118 avail_workers = support.avail_worker_ids(persistent=False, zero_resource_

→˓workers=True, gen_workers=True)
119

120 for wid in avail_workers:
121 if gen_count < user.get("num_active_gens", 1):
122 # Finally, start a persistent generator as there is nothing else to do.

(continues on next page)

6.5. Example User Functions and Calling Scripts 241

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

123 try:
124 Work[wid] = support.gen_work(
125 wid,
126 gen_specs.get("in", []),
127 range(len(H)),
128 persis_info.get(wid),
129 persistent=True,
130 active_recv=active_recv_gen,
131)
132 except InsufficientFreeResources:
133 break
134

135 persis_info["num_gens_started"] = persis_info.get("num_gens_started", 0)␣
→˓+ 1

136 gen_count += 1
137

138 return Work, persis_info, 0

start_persistent_local_opt_gens

start_persistent_local_opt_gens.start_persistent_local_opt_gens(W , H, sim_specs, gen_specs,
alloc_specs, persis_info,
libE_info)

This allocation function will do the following:

• Start up a persistent generator that is a local opt run at the first point identified by APOSMM’s de-
cide_where_to_start_localopt. Note, it will do this only if at least one worker will be left to perform
simulation evaluations.

• If multiple starting points are available, the one with smallest function value is chosen.

• If no candidate starting points exist, points from existing runs will be evaluated (oldest first).

• If no points are left, call the generation function.

tags: alloc, persistent, aposmm

See also:

test_uniform_sampling_then_persistent_localopt_runs.py # noqa

6.5.4 Calling Scripts

Below are example calling scripts used to populate specifications for each user function and libEnsemble before initi-
ating libEnsemble via the primary libE() call. The primary libEnsemble-relevant portions have been highlighted in
each example. Non-highlighted portions may include setup routines, compilation steps for user applications, or out-
put processing. The first two scripts correspond to random sampling calculations, while the third corresponds to an
optimization routine.

Many other examples of calling scripts can be found in libEnsemble’s regression tests.

242 Chapter 6. Appendices

https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/functionality_tests/test_uniform_sampling_then_persistent_localopt_runs.py
https://github.com/Libensemble/libensemble/tree/develop/libensemble/tests/regression_tests

libEnsemble User Manual, Release 1.3.0+dev

Local Sine Tutorial

This example is from the Local Sine Tutorial, meant to run with Python’s multiprocessing as the primary comms
method.

Listing 3: examples/tutorials/simple_sine/test_local_sine_tutorial.py

1 import numpy as np
2 from sine_gen import gen_random_sample
3 from sine_sim import sim_find_sine
4

5 from libensemble import Ensemble
6 from libensemble.specs import ExitCriteria, GenSpecs, LibeSpecs, SimSpecs
7

8 if __name__ == "__main__": # Python-quirk required on macOS and windows
9 libE_specs = LibeSpecs(nworkers=4, comms="local")

10

11 gen_specs = GenSpecs(
12 gen_f=gen_random_sample, # Our generator function
13 out=[("x", float, (1,))], # gen_f output (name, type, size)
14 user={
15 "lower": np.array([-3]), # lower boundary for random sampling
16 "upper": np.array([3]), # upper boundary for random sampling
17 "gen_batch_size": 5, # number of x's gen_f generates per call
18 },
19)
20

21 sim_specs = SimSpecs(
22 sim_f=sim_find_sine, # Our simulator function
23 inputs=["x"], # InputArray field names. "x" from gen_f output
24 out=[("y", float)], # sim_f output. "y" = sine("x")
25) # sim_specs_end_tag
26

27 exit_criteria = ExitCriteria(sim_max=80) # Stop libEnsemble after 80 simulations
28

29 ensemble = Ensemble(sim_specs, gen_specs, exit_criteria, libE_specs)
30 ensemble.add_random_streams() # setup the random streams unique to each worker
31 ensemble.run() # start the ensemble. Blocks until completion.
32

33 history = ensemble.H # start visualizing our results
34

35 print([i for i in history.dtype.fields]) # (optional) to visualize our history array
36 print(history)
37

38 import matplotlib.pyplot as plt
39

40 colors = ["b", "g", "r", "y", "m", "c", "k", "w"]
41

42 for i in range(1, libE_specs.nworkers + 1):
43 worker_xy = np.extract(history["sim_worker"] == i, history)
44 x = [entry.tolist()[0] for entry in worker_xy["x"]]
45 y = [entry for entry in worker_xy["y"]]
46 plt.scatter(x, y, label="Worker {}".format(i), c=colors[i - 1])

(continues on next page)

6.5. Example User Functions and Calling Scripts 243

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

47

48 plt.title("Sine calculations for a uniformly sampled random distribution")
49 plt.xlabel("x")
50 plt.ylabel("sine(x)")
51 plt.legend(loc="lower right")
52 plt.savefig("tutorial_sines.png")

Electrostatic Forces with Executor

These examples are from a test for evaluating the scaling capabilities of libEnsemble by calculating particle electrostatic
forces through a user application. This application is registered with either the MPI or Balsam Executor, then submitted
for execution in the sim_f. Note the use of the parse_args() and save_libE_output() convenience functions from
the tools module in the first calling script.

Traditional Version

Listing 4: tests/scaling_tests/forces/forces_adv/run_libe_forces.py

1 #!/usr/bin/env python
2 import os
3 import sys
4

5 import numpy as np
6 from forces_simf import run_forces # Sim func from current dir
7 from forces_support import check_log_exception, test_ensemble_dir, test_libe_stats
8

9 from libensemble import logger
10 from libensemble.executors.mpi_executor import MPIExecutor
11

12 # Import libEnsemble modules
13 from libensemble.libE import libE
14 from libensemble.manager import ManagerException
15 from libensemble.tools import add_unique_random_streams, parse_args, save_libE_output
16

17 PERSIS_GEN = False
18

19 if PERSIS_GEN:
20 from libensemble.alloc_funcs.start_only_persistent import only_persistent_gens as␣

→˓alloc_f
21 from libensemble.gen_funcs.persistent_sampling import persistent_uniform as gen_f
22 else:
23 from libensemble.alloc_funcs.give_sim_work_first import give_sim_work_first as alloc_

→˓f
24 from libensemble.gen_funcs.sampling import uniform_random_sample as gen_f
25

26

27 logger.set_level("INFO") # INFO is now default
28

29 nworkers, is_manager, libE_specs, _ = parse_args()
30

(continues on next page)

244 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

31 sim_app = os.path.join(os.getcwd(), "../forces_app/forces.x")
32

33 if not os.path.isfile(sim_app):
34 sys.exit("forces.x not found - please build first in ../forces_app dir")
35

36 if is_manager:
37 print(f"\nRunning with {nworkers} workers\n")
38

39 exctr = MPIExecutor()
40 exctr.register_app(full_path=sim_app, app_name="forces")
41

42 # Note: Attributes such as kill_rate are to control forces tests, this would not be a␣
→˓typical parameter.

43

44 # State the objective function, its arguments, output, and necessary parameters (and␣
→˓their sizes)

45 sim_specs = {
46 "sim_f": run_forces, # Function whose output is being minimized
47 "in": ["x"], # Name of input for sim_f
48 "out": [("energy", float)], # Name, type of output from sim_f
49 "user": {
50 "keys": ["seed"],
51 "cores": 2,
52 "sim_particles": 1e3,
53 "sim_timesteps": 5,
54 "sim_kill_minutes": 10.0,
55 "particle_variance": 0.2,
56 "kill_rate": 0.5,
57 "fail_on_sim": False,
58 "fail_on_submit": False, # Won't occur if 'fail_on_sim' True
59 },
60 }
61 # end_sim_specs_rst_tag
62

63 # State the generating function, its arguments, output, and necessary parameters.
64 gen_specs = {
65 "gen_f": gen_f, # Generator function
66 "in": [], # Generator input
67 "out": [("x", float, (1,))], # Name, type and size of data produced (must match sim_

→˓specs 'in')
68 "user": {
69 "lb": np.array([0]), # Lower bound for random sample array (1D)
70 "ub": np.array([32767]), # Upper bound for random sample array (1D)
71 "gen_batch_size": 1000, # How many random samples to generate in one call
72 },
73 }
74

75 if PERSIS_GEN:
76 alloc_specs = {"alloc_f": alloc_f}
77 else:
78 alloc_specs = {
79 "alloc_f": alloc_f,

(continues on next page)

6.5. Example User Functions and Calling Scripts 245

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

80 "user": {
81 "batch_mode": True, # If true wait for all sims to process before generate␣

→˓more
82 "num_active_gens": 1, # Only one active generator at a time
83 },
84 }
85

86 libE_specs["save_every_k_gens"] = 1000 # Save every K steps
87 libE_specs["sim_dirs_make"] = True # Separate each sim into a separate directory
88 libE_specs["profile"] = False # Whether to have libE profile on (default False)
89

90 # Maximum number of simulations
91 sim_max = 8
92 exit_criteria = {"sim_max": sim_max}
93

94 # Create a different random number stream for each worker and the manager
95 persis_info = {}
96 persis_info = add_unique_random_streams(persis_info, nworkers + 1)
97

98 try:
99 H, persis_info, flag = libE(

100 sim_specs,
101 gen_specs,
102 exit_criteria,
103 persis_info=persis_info,
104 alloc_specs=alloc_specs,
105 libE_specs=libE_specs,
106)
107

108 except ManagerException:
109 if is_manager and sim_specs["user"]["fail_on_sim"]:
110 check_log_exception()
111 test_libe_stats("Exception occurred\n")
112 else:
113 if is_manager:
114 save_libE_output(H, persis_info, __file__, nworkers)
115 if sim_specs["user"]["fail_on_submit"]:
116 test_libe_stats("Task Failed\n")
117 test_ensemble_dir(libE_specs, "./ensemble", nworkers, sim_max)

Object + yaml Version

Listing 5: tests/scaling_tests/forces/forces_adv/run_libe_forces_from_yaml.py

1 #!/usr/bin/env python
2 import os
3 import sys
4

5 import numpy as np
6

(continues on next page)

246 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

7 from libensemble.ensemble import Ensemble
8 from libensemble.executors.mpi_executor import MPIExecutor
9 from libensemble.tools import add_unique_random_streams

10

11 ####################
12

13 sim_app = os.path.join(os.getcwd(), "../forces_app/forces.x")
14

15 if not os.path.isfile(sim_app):
16 sys.exit("forces.x not found - please build first in ../forces_app dir")
17

18

19 ####################
20

21 forces = Ensemble(parse_args=True)
22 forces.from_yaml("forces.yaml")
23

24 forces.logger.set_level("INFO")
25

26 if forces.is_manager:
27 print(f"\nRunning with {forces.nworkers} workers\n")
28

29 exctr = MPIExecutor()
30 exctr.register_app(full_path=sim_app, app_name="forces")
31

32 forces.libE_specs["ensemble_dir_path"] = "./ensemble"
33 forces.gen_specs.user.update(
34 {
35 "lb": np.array([0]),
36 "ub": np.array([32767]),
37 }
38)
39

40 forces.persis_info = add_unique_random_streams({}, forces.nworkers + 1)
41

42 forces.run()
43 forces.save_output(__file__)

Listing 6: tests/scaling_tests/forces/forces_adv/forces.yaml

1 libE_specs:
2 save_every_k_gens: 1000
3 sim_dirs_make: True
4 profile: False
5

6 exit_criteria:
7 sim_max: 8
8

9 sim_specs:
10 sim_f: forces_simf.run_forces
11 inputs:
12 - x

(continues on next page)

6.5. Example User Functions and Calling Scripts 247

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

13 outputs:
14 energy:
15 type: float
16

17 user:
18 keys:
19 - seed
20 cores: 1
21 sim_particles: 1.e+3
22 sim_timesteps: 5
23 sim_kill_minutes: 10.0
24 particle_variance: 0.2
25 kill_rate: 0.5
26 fail_on_sim: False
27 fail_on_submit: False
28

29 gen_specs:
30 gen_f: libensemble.gen_funcs.sampling.uniform_random_sample
31 outputs:
32 x:
33 type: float
34 size: 1
35 user:
36 gen_batch_size: 1000
37

38 alloc_specs:
39 alloc_f: libensemble.alloc_funcs.give_sim_work_first.give_sim_work_first
40 outputs:
41 allocated:
42 type: bool
43 user:
44 batch_mode: True
45 num_active_gens: 1

Persistent APOSMM with Gradients

This example is also from the regression tests and demonstrates configuring a persistent run via a custom allocation
function.

Listing 7: tests/regression_tests/test_persistent_aposmm_with_grad.py

1 """
2 Runs libEnsemble with APOSMM with an NLopt local optimizer that uses gradient
3 information from the sim_f
4

5 Execute via one of the following commands (e.g. 3 workers):
6 mpiexec -np 4 python test_persistent_aposmm_with_grad.py
7 python test_persistent_aposmm_with_grad.py --nworkers 3 --comms local
8 python test_persistent_aposmm_with_grad.py --nworkers 3 --comms tcp
9

10 When running with the above commands, the number of concurrent evaluations of
(continues on next page)

248 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

11 the objective function will be 2, as one of the three workers will be the
12 persistent generator.
13 """
14

15 # Do not change these lines - they are parsed by run-tests.sh
16 # TESTSUITE_COMMS: local mpi tcp
17 # TESTSUITE_NPROCS: 4
18 # TESTSUITE_EXTRA: true
19

20 import multiprocessing
21 import sys
22 from math import gamma, pi, sqrt
23

24 import numpy as np
25

26 import libensemble.gen_funcs
27

28 # Import libEnsemble items for this test
29 from libensemble.libE import libE
30 from libensemble.sim_funcs.six_hump_camel import six_hump_camel as sim_f
31 from libensemble.sim_funcs.six_hump_camel import six_hump_camel_func, six_hump_camel_grad
32

33 libensemble.gen_funcs.rc.aposmm_optimizers = "nlopt"
34 from time import time
35

36 from libensemble.alloc_funcs.persistent_aposmm_alloc import persistent_aposmm_alloc as␣
→˓alloc_f

37 from libensemble.gen_funcs.persistent_aposmm import aposmm as gen_f
38 from libensemble.tests.regression_tests.support import six_hump_camel_minima as minima
39 from libensemble.tools import add_unique_random_streams, parse_args, save_libE_output
40

41 # Main block is necessary only when using local comms with spawn start method (default␣
→˓on macOS and Windows).

42 if __name__ == "__main__":
43 multiprocessing.set_start_method("fork", force=True)
44

45 nworkers, is_manager, libE_specs, _ = parse_args()
46

47 if is_manager:
48 start_time = time()
49

50 if nworkers < 2:
51 sys.exit("Cannot run with a persistent worker if only one worker -- aborting...")
52

53 n = 2
54 sim_specs = {
55 "sim_f": sim_f,
56 "in": ["x"],
57 "out": [("f", float), ("grad", float, n)],
58 }
59

60 gen_out = [

(continues on next page)

6.5. Example User Functions and Calling Scripts 249

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

61 ("x", float, n),
62 ("x_on_cube", float, n),
63 ("sim_id", int),
64 ("local_min", bool),
65 ("local_pt", bool),
66]
67

68 gen_in = ["x", "f", "grad", "local_pt", "sim_id", "sim_ended", "x_on_cube", "local_
→˓min"]

69

70 gen_specs = {
71 "gen_f": gen_f,
72 "in": gen_in,
73 "persis_in": gen_in,
74 "out": gen_out,
75 "user": {
76 "initial_sample_size": 0, # Don't need to do evaluations because the␣

→˓sampling already done below
77 "localopt_method": "LD_MMA",
78 "rk_const": 0.5 * ((gamma(1 + (n / 2)) * 5) ** (1 / n)) / sqrt(pi),
79 "stop_after_k_minima": 25,
80 "xtol_rel": 1e-6,
81 "ftol_rel": 1e-6,
82 "max_active_runs": 6,
83 "lb": np.array([-3, -2]),
84 "ub": np.array([3, 2]),
85 },
86 }
87

88 alloc_specs = {"alloc_f": alloc_f}
89

90 persis_info = add_unique_random_streams({}, nworkers + 1)
91

92 exit_criteria = {"sim_max": 1000}
93

94 # Load in "already completed" set of 'x','f','grad' values to give to libE/persistent_
→˓aposmm

95 sample_size = len(minima)
96

97 H0_dtype = [
98 ("x", float, n),
99 ("grad", float, n),

100 ("sim_id", int),
101 ("x_on_cube", float, n),
102 ("sim_ended", bool),
103 ("f", float),
104 ("gen_informed", bool),
105 ("sim_started", bool),
106]
107 H0 = np.zeros(sample_size, dtype=H0_dtype)
108

109 # Two points in the following sample have the same best function value, which

(continues on next page)

250 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

(continued from previous page)

110 # tests the corner case for some APOSMM logic
111 H0["x"] = np.round(minima, 1)
112 H0["x_on_cube"] = (H0["x"] - gen_specs["user"]["lb"]) / (gen_specs["user"]["ub"] -␣

→˓gen_specs["user"]["lb"])
113 H0["sim_id"] = range(sample_size)
114 H0[["sim_started", "gen_informed", "sim_ended"]] = True
115

116 for i in range(sample_size):
117 H0["f"][i] = six_hump_camel_func(H0["x"][i])
118 H0["grad"][i] = six_hump_camel_grad(H0["x"][i])
119

120 # Perform the run
121 H, persis_info, flag = libE(sim_specs, gen_specs, exit_criteria, persis_info, alloc_

→˓specs, libE_specs, H0=H0)
122

123 if is_manager:
124 assert persis_info[1].get("run_order"), "Run_order should have been given back"
125 assert (
126 len(persis_info[1]["run_order"]) >= gen_specs["user"]["stop_after_k_minima"]
127), "This test should have many runs started."
128 assert len(H) < exit_criteria["sim_max"], "Test should have stopped early due to

→˓'stop_after_k_minima'"
129

130 print("[Manager]:", H[np.where(H["local_min"])]["x"])
131 print("[Manager]: Time taken =", time() - start_time, flush=True)
132

133 tol = 1e-5
134 for m in minima:
135 # The minima are known on this test problem.
136 # We use their values to test APOSMM has identified all minima
137 print(np.min(np.sum((H[H["local_min"]]["x"] - m) ** 2, 1)), flush=True)
138 assert np.min(np.sum((H[H["local_min"]]["x"] - m) ** 2, 1)) < tol
139

140 save_libE_output(H, persis_info, __file__, nworkers)

6.6 Release Notes

Below are the notes from all libEnsemble releases.

GitHub issues are referenced, and can be viewed with hyperlinks on the github releases page.

6.6. Release Notes 251

https://github.com/Libensemble/libensemble/releases

libEnsemble User Manual, Release 1.3.0+dev

6.6.1 Release 1.3.0

Date
May 01, 2024

• Support generator running on the manager (on a thread). #1216/#1290 * Set libE_specs[“gen_on_manager”] =
True * Then run with nworkers equal to the number of simulation workers.

• Default to local comms when nworkers is supplied and no MPI runner is detected. #1169

• Parse args defaults to local comms when –nworkers (or -n) is set on the command line. #1169

Note

• Tests were run on Linux and MacOS with Python versions 3.9, 3.10, 3.11, 3.12

• Heterogeneous workflows tested on Frontier (OLCF), Polaris (ALCF), and Perlmutter (NERSC).

• Note that tests have been recently run on Aurora (ALCF), but the system was unavailable at time of release.

• Tests were also run on Bebop and Improv LCRC systems.

Known Issues

• See known issues section in the documentation.

6.6.2 Release 1.2.2

Date
March 21, 2024

• Bugfix: Some libE_specs were not passed through correctly when added after ensemble initialization. #1264

• platform_specs options are now merged with detected platforms, rather than replacing. #1265

• Ensure simulation directories are created when sim_input_dir is specified, likewise for gen dirs. #1266

Example user functions:

• Improved structure of gpCAM generator. #1260

Note

• Tests were run on Linux and MacOS with Python versions 3.9, 3.10, 3.11, 3.12

• Heterogeneous workflows tested on Frontier (OLCF), Polaris (ALCF), and Perlmutter (NERSC).

• Note that tests have been recently run on Aurora (ALCF), but the system was unavailable at time of release.

• Tests were also run on Bebop and Improv LCRC systems.

Known Issues

• See known issues section in the documentation.

252 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

6.6.3 Release 1.2.1

Date
February 23, 2024

• Fix documentation bug where pydantic models do not display correctly. #1249

• Improve internal efficiency. #1243 / #1249

Note

• Tests were run on Linux and MacOS with Python versions 3.9, 3.10, 3.11, 3.12

• Heterogeneous workflows tested on Aurora (ALCF), Frontier (OLCF), Polaris, and Perlmutter (NERSC).

• Tests were also run on Bebop and Improv LCRC systems.

Known Issues

• See known issues section in the documentation.

6.6.4 Release 1.2.0

Date
February 8, 2024

New capabilities:

• Support for both Pydantic 1 and 2. #1135

• Support object dtype in history array. #1179 / #1181

• Users can add additional fields to output arrays in user functions. #1203

• Decorators to provide user function in/out specs. #1072

Fixes:

• Bug fix - Overwrite history file on completion when even when the pathname is unchanged. #1177

• Prevent duplicate save when using save_every_k_gens. #1154

• Add a FAILED_TO_START task status. #1229

• Set ensemble.nworkers when create ensemble object even when parse_args is False. #1162

Platform support:

• Add platform support for Aurora. #1183 * Support for GPU tiles (new platform spec tiles_per_gpu). * Add
libE_specs option use_tiles_as_gpus to treat each tile as a GPU. * Add Aurora platform guide.

• Add platform guide for Improv. #1235

• Detection of Perlmutter GPU nodes updated. #1211

• Make srun GPU setting default to gpus_per_task instead of gpus_per_node. #1206

• Remove Theta support and guide. #1200

Example user functions:

• Add gpCAM generator. #1189 / #1213 / #1220

• Support for IBCDFO local optimization methods in APOSMM. #998

• Add mock_sim to enable replay of a previous run using history file. #1207

6.6. Release Notes 253

libEnsemble User Manual, Release 1.3.0+dev

• Fix Sine tutorial. #1168

Note

• Tests were run on Linux and MacOS with Python versions 3.9, 3.10, 3.11, 3.12

• Heterogeneous workflows tested on Aurora (ALCF), Frontier (OLCF), Polaris, and Perlmutter (NERSC).

• Tests were also run on Bebop and Improv LCRC systems.

Known Issues

• See known issues section in the documentation.

6.6.5 Release 1.1.0

Date
November 8, 2023

New capabilities:

• New history array save options in libE_specs. #1103/#1139/#1141 * save_H_on_completion saves history before
exiting main libE function. * save_H_with_date includes date and timestamp in the save. * H_file_prefix provides
prefix for saved file. * save_H_on_completion defaults to True when save_every_k_gens/sims is set.

Support for Python versions:

• Adds support/testing for Python 3.12

• Removes testing of Python 3.8

Note

• Tests were run on Linux and MacOS with Python versions 3.9, 3.10, 3.11, 3.12

• Heterogeneous workflows tested on Frontier (OLCF), Polaris, and Perlmutter (NERSC).

• Tests were also run on Bebop and Improv LCRC systems.

Known Issues

• See known issues section in the documentation.

6.6.6 Release 1.0.0

Date
September 25, 2023

New capabilities:

• libE_specs option final_gen_send returns last results to the generator (replaces final_fields). #1086

• libE_specs option reuse_output_dir allows reuse of workflow and ensemble directories. #1028 #1041

• libE_specs option calc_dir_id_width no. of digits for calc ID in output sim/gen directories. #1052 / #1066

• Added gen_num_procs and gen_num_gpus libE_specs (and persis_info) options for resourcing a generator.
#1068

• Added gpu_env_fallback option to platform fields - specifies a GPU environment variable (for non-MPI usage).
#1050

• New MPIExecutor submit() argument mpi_runner_type specifies an MPI runner for current call only. #1054

254 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

• Allow oversubscription when using the num_procs gen_specs[“out”] option. #1058

• sim/gen_specs can use outputs in place of out to be consistent with inputs. #1075

• Executor can be obtained from libE_info (4th parameter) in user functions. #1078

Breaking changes:

• libE_specs option final_fields is removed in favor of final_gen_send. #1086

• libE_specs option kill_canceled_sims now defaults to False. #1062

• parse_args is not run automatically by Ensemble constructor.

Updates to Object Oriented Ensemble interface:

• Added parse_args as option to Ensemble constructor. #1065

• The executor can be passed as an option to the Ensemble constructor. #1078

• Better handling of Ensemble.add_random_streams and ensemble.persis_info. #1074

Output changes:

• The worker ID suffix is removed from sim/gen output directories. #1041

• Separate ensemble.log and libE_stats.txt for different workflows directories. #1027 #1041

• Defaults to four digits for sim/gen ID in output directories (adds digits on overflow). #1052 / #1066

Bug fixes:

• Resolved PETSc/Open-MPI issue (when using the Executor). #1064

• Prevent mpi4py validation running during local comms (when using OO interface). #1065

Performance changes:

• Optimize kill_cancelled_sims function. #1043 / #1063

• safe_mode defaults to False (for performance). #1053

Updates to example functions:

• Multiple regression tests and examples ported to use OO ensemble interface. #1014

Update forces examples:

• Make persistent generator the default for both simple and GPU examples (inc. updated tutorials).

• Update to object oriented interface.

• Added separate variable resources example for forces GPU.

• Rename multi_task example to multi_app.

Documentation:

• General overhaul and simplification of documentation. #992

Note

• Tested platforms include Linux, MacOS, Windows, and major systems such as Frontier (OLCF), Polaris, and
Perlmutter (NERSC). The major system tests ran heterogeneous workflows.

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10, 3.11.

Known Issues

• See known issues section in the documentation.

6.6. Release Notes 255

libEnsemble User Manual, Release 1.3.0+dev

6.6.7 Release 0.10.2

Date
July 24, 2023

• Fixes issues with workflow directories: * Ensure relative paths are interpreted from where libEnsemble is run.
#1020 * Create intermediate directories for workflow paths. #1017

• Fixes issue where libEnsemble pre-initialized a shared multiprocessing queue. #1026

Note

• Tested platforms include Linux, MacOS, Windows and major systems including Frontier (OLCF), Polaris
(ALCF), Perlmutter (NERSC), Theta (ALCF) and Bebop. The major system tests ran heterogeneous workflows.

Known issues

• On systems using SLURM 23.02, some issues have been experienced when using mpi4py comms.

• See the known issues section in the documentation for more information (https://libensemble.readthedocs.io/en/
main/known_issues.html).

6.6.8 Release 0.10.1

Date
July 10, 2023

Hotfix for breaking changes in Pydantic.

• Pin Pydantic to version < 2.

• Minor fixes for NumPy 1.25 deprecations.

Note

• Tested platforms include Linux, MacOS, Windows and major systems including Frontier (OLCF) and Perlmutter
(NERSC). The major system tests ran heterogeneous workflows.

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10, 3.11.

Known issues

• See known issues section in the documentation.

6.6.9 Release 0.10.0

Date
May 26, 2023

New capabilities:

• Enhance portability and simplify the assignment of procs/GPUs to worker resources #928 / #983 * Auto-detect
GPUs across systems (inc. Nvidia, AMD, and Intel GPUs). * Auto-determination of GPU assignment method by
MPI runner or provided platform. * Portable auto_assign_gpus / match_procs_to_gpus and num_gpus arguments
added to the MPI executor submit. * Add set_to_gpus function (similar to set_to_slots). * Allow users to specify
known systems via option or environment variable. * Allow users to specify their own system configurations. *
These changes remove a number of tweaks that were needed for particular platforms.

• Resource management supports GPU and non-GPU simulations in the same ensemble. #993 * User’s can specify
num_procs and num_gpus in the generator for each evaluation.

256 Chapter 6. Appendices

https://libensemble.readthedocs.io/en/main/known_issues.html
https://libensemble.readthedocs.io/en/main/known_issues.html

libEnsemble User Manual, Release 1.3.0+dev

• Pydantic models are used for validating major libE input (input can be provided as classes or dictionaries). #878

• Added option to store output and ensemble directories in a workflow directory. #982

• Simplify user function interface. Valid user functions can accept <4 parameters and return <3 values. #971

• New option to parse settings from TOML. #745

• New dry_run option to libE() that checks scripts are valid and returns. #987

• Added an option to the executor submit function to pre-execute a script in the task environment. #996

Breaking changes:

• Removed old Balsam Executor. #921

• Ensemble class moved from libensemble.api to libensemble.ensemble. #1003

• Default to one resource set per simulation in dynamic scheduling mode. #996

Documentation:

• Added type hints/annotations for major modules/functions. #823

• Added Polaris Guide. #930

• Added Frontier Guide. #909

• Added PBS example scripts. #956 #930

• Streamlined and improved the readability of docs. #1004

Tests and Examples:

• Updated forces_gpu tutorial example. #956 * Source code edit is not required for the GPU version. * Reports
whether running on device or host. * Increases problem size. * Added versions with persistent generator and
multi-task (GPU v non-GPU).

• Moved multiple tests, generators, and simulators to the community repo.

• Added ytopt example. And updated heFFTe example. #943

• Support Python 3.11 #922

Note

• Tested platforms include Linux, MacOS, Windows and major systems: Frontier (OLCF), Polaris (ALCF), and
Perlmutter (NERSC). The major system tests ran heterogeneous workflows.

• Recent testing was also carried out on Summit (IBM Power9/LSF), but this was not possible at time of release.

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10, 3.11.

Known issues

• See known issues section in the documentation.

6.6. Release Notes 257

libEnsemble User Manual, Release 1.3.0+dev

6.6.10 Release 0.9.3

Date
October 13, 2022

New capabilities:

• New pair of utilities, liberegister and libesubmit (based on PSI/J), for easily preparing and launching libEnsemble
workflows with local comms onto most machines and schedulers. #807

• New persistent support function to cancel sim_ids (request_cancel_sim_ids). #880

• keep_state option for persistent workers: this lets the manager know that the information being sent is interme-
diate. #880

Other enhancements:

• The Executor manager_poll() interface now sets consistent flags instead of literal strings. #877

• Some internal modules and the test suite now work on Windows. #869 #888

• Specifying the num_resource_sets libE_specs option instead of zero_resource_workers is now recommended ex-
cept when using a fixed worker/resource mapping. Use persis_info["gen_resources"] to assign persistent
generator resources (default is zero). #905

• An extraneous warning removed. #903

Note

• Tested platforms include Linux, MacOS, Windows, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF),
Bebop (Cray CS400/Slurm), Swing (A100 GPU system), Perlmutter (HPE Cray EX with A100 NVIDIA GPUs).
For Perlmutter, see “Known issues” below.

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10.

Known issues

• At time of testing on Perlmutter there was an issue running concurrent applications on a node, following a recent
system update. This also affects previous versions of libEnsemble, and is being investigated.

• See known issues section in the documentation.

6.6.11 Release 0.9.2

Date
July 06, 2022

New capabilities:

• Support auto-detection of PBS node lists. #602

• Added configuration options for libE_stats.txt file. #743

• Support for spawn and forkserver multiprocessing start methods. #797

• Note that macOS no longer switches to using fork. macOS (since Python 3.8) and Windows default to
using spawn. When using spawn, we recommend placing calling script code in an if __name__ ==
"__main__": block. The multiprocessing interface can be used to switch methods (https://docs.python.org/
3/library/multiprocessing.html#multiprocessing.set_start_method).

Updates to example functions:

Added simple dynamic sampling example. #833 Added heFFTe example. #844 Regression tests separated into problem
examples and functionality tests. #839

258 Chapter 6. Appendices

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method

libEnsemble User Manual, Release 1.3.0+dev

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), Swing (A100 GPU system), Perlmutter (HPE Cray EX with A100 NVIDIA GPUs).

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10.

Known issues

• The APOSMM generator function has been noted to operate slower than expected with the spawn multiprocessing
start method. For this reason we recommend using fork with APOSMM, when using local comms (fork is the
default method on Linux systems).

• See known issues section in the documentation.

6.6.12 Release 0.9.1

Date
May 11, 2022

This release has minimal changes, but a large number of touched lines.

• Reformatted code for black compliance, including string normalization. #811, #814, #821

• Added Spock and Crusher guides. #802

• User can now set calc_status to any string (for output in libE_stats). #808

• Added a workflows community initiative file. #817

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), Swing (A100 GPU system), Perlmutter (HPE Cray EX with A100 NVIDIA GPUs).

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10.

Known issues

• See known issues section in the documentation.

6.6.13 Release 0.9.0

Date
Apr 29, 2022

Featured new capabilities:

• New Balsam Executor with multi-site capability (run user applications on remote systems). #631, #729

• Support for funcX (place user functions on remote systems). #712 / #713

• Added partial support for concurrent/futures interface. (cancel(), cancelled(), done(), running(), result(), excep-
tion() and context manager) #719

Breaking API / helper function changes:

See “Updating for libEnsemble v0.9.0” wiki for details: https://github.com/Libensemble/libensemble/wiki/
Updating-for-libEnsemble-v0.9.0

• Scheduler options moved from alloc_specs[‘user’] to libE_specs. #790

• BalsamMPIExecutor is now LegacyBalsamMPIExecutor. #729

6.6. Release Notes 259

https://github.com/Libensemble/libensemble/wiki/Updating-for-libEnsemble-v0.9.0
https://github.com/Libensemble/libensemble/wiki/Updating-for-libEnsemble-v0.9.0

libEnsemble User Manual, Release 1.3.0+dev

• The exit_criteria elapsed_wallclock_time has been renamed wallclock_max. #750 (with a deprecation warning)

• Clearer and consistent naming of libE-protected fields in history array. #760

Updates to example functions:

• Moved some examples to new repository - [libe-community-examples](https://github.com/Libensemble/
libe-community-examples) (VTMOP, DEAP, DeepDriveMD). #716, #721, #726

• Updates to Tasmanian examples to include asynchronous generator example. #727 / #732

• Added multi-task, multi-fidelity optimization regression tests using ax. #717 / #720

Other functionality enhancements:

• Non-blocking option added for persistent user function receives. #752

• Added match_slots option to resource scheduler. #746

Documentation:

• Added tutorial on assigning tasks to GPUs. #768

• Refactored Executor tutorial for simplicity. #749

• Added Perlmutter guide. #728

• Added Slurm guide. #728

• Refactored examples and tutorials - added exercises. #736 / #737

• Updated history array documentation with visual workflow example. #723

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), Swing (A100 GPU system), Perlmutter (HPE Cray EX with A100 NVIDIA GPUs).

• Tested Python versions: (Cpython) 3.7, 3.8, 3.9, 3.10.

Known issues

• Open-MPI does not work with direct MPI job launches in mpi4py comms mode, since it does not support nested
MPI launches. (Either use local mode or the Balsam Executor.)

• See known issues section in the documentation for more issues.

6.6.14 Release 0.8.0

Date
Oct 20, 2021

Featured new capabilities:

• Variable resource workers (dynamic reassignment of resources to workers). #643

• Alternative libE interface. An Ensemble object is created and can be parameterized by a YAML file. #645

• Improved support classes/functions for alloc/gen/sims and executors.

• Many new example generator/simulators and workflows.

Breaking API / helper function changes:

See “Updating for libEnsemble v0.8.0” wiki for details: https://github.com/Libensemble/libensemble/wiki/
Updating-for-libEnsemble-v0.8.0

260 Chapter 6. Appendices

https://github.com/Libensemble/libe-community-examples
https://github.com/Libensemble/libe-community-examples
https://github.com/Libensemble/libensemble/wiki/Updating-for-libEnsemble-v0.8.0
https://github.com/Libensemble/libensemble/wiki/Updating-for-libEnsemble-v0.8.0

libEnsemble User Manual, Release 1.3.0+dev

• Resources management is now independent of the executor. #345

• The 'persis_in' field has been added to gen_specs/sim_specs (instead of being hard-coded in alloc funcs).
#626 / #670

• alloc support module is now a class. #643 / #656

• gen_support module is replaced by Persistent Worker support module (now a class). #609 / #671

• Remove libE_ prefix from the logger. #608

• avail_worker_ids function should specify EVAL_GEN_TAG or EVAL_SIM_TAG instead of True. #615 #643

• Pass libE_info to allocation functions (allows more flexibility for user and efficiency improvements). #672

• 'given_back' is now a protected libEnsemble field in the manager’s history array. #651

• Several name changes to functions and parameters (See the wiki above for details). #529 / #659

Updates to example functions:

• Suite of distributed optimization methods for minimizing sums of convex functions. #647 / #649. Methods
include:

• primal-dual sliding (https://arxiv.org/pdf/2101.00143).

• N-agent, or distributed gradient descent w/ gradient tracking (https://arxiv.org/abs/1908.11444).

• proximal sliding (https://arxiv.org/abs/1406.0919).

• Added batched construction for Tasmanian example. #644

• Added Tasmanian dependency to Spack package. spack/spack#25762

• Added VTMOP source code and example usage. #676

• Added a multi-fidelity persistent_gp regression test. #683 / #684

• Added a DeepDriveMD inspired workflow. #630

• Created a persistent sim example. #614 / #615

• Added an example where cancellations are given from the alloc func. #677

Other functionality changes:

• A helper function for generic task polling loop has been added. #572 / #612

• Break main loop now happens when sim_max is returned rather than given out. #624

• Enable a final communication with gen. #620 / #628

• Logging updates - includes timestamps, enhanced debug logging, and libEnsemble version. #629 / #674

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), Swing (A100 GPU system).

• Tested Python versions: (Cpython) 3.6, 3.7, 3.8, 3.9, 3.101.

Known issues

• Open-MPI does not work with direct MPI job launches in mpi4py comms mode, since it does not support nested
MPI launches. (Either use local mode or the Balsam Executor.)

• See known issues section in the documentation for more issues.
1 A reduced set of tests were run for python 3.10 due to some unavailable test dependencies at time of release.

6.6. Release Notes 261

https://arxiv.org/pdf/2101.00143
https://arxiv.org/abs/1908.11444
https://arxiv.org/abs/1406.0919

libEnsemble User Manual, Release 1.3.0+dev

6.6.15 Release 0.7.2

Date
May 03, 2021

API additions:

• Active receive option added that allows irregular manager/worker communication patterns. (#527 / #595)

• A mechanism is added for the cancellation/killing of previously issued evaluations. (#528 / #595 / #596)

• A submit function is added in the base Executor class that runs a serial application locally. (#531 / #595)

• Added libEnsemble history array protected fields: returned_time, last_given_time, and last_gen_time. (#590)

• Updated libE_specs options (mpi_comm and profile). (#547 / #548)

• Explicit seeding of random streams in add_unique_random_streams() is now possible. (#542 / #545)

Updates to example functions:

• Added Surmise calibration generator function and two examples (regression tests). (#595)

Other changes:

• Better support for uneven worker to node distribution (including at sub-node level). (#591 / #600)

• Fixed crash when running on Windows. (#534)

• Fixed crash when running with empty persis_info. (#571 / #578)

• Error handling has been made more robust. (#592)

• Improve H0 processing (esp. for pre-generated, but not evaluated points). (#536 / #537)

• A global sim_id is now given, rather than a local count, in _libE_stats.txt_. Also a global gen count is given.
(#587, #588)

• Added support for Python 3.9. (#532 / Removed support for Python 3.5. (#562)

• Improve SLURM nodelist detection (more robust). (#560)

• Add check that user does not change protected history fields (Disable via libE_specs['safe_mode'] =
False). (#541)

• Added print_fields.py script for better interrogating the output history files. (#558)

• In examples, is_master changed to is_manager to be consistent with manager/worker nomenclature. (#524)

Documentation:

• Added tutorial Borehole Calibration with Selective Simulation Cancellation. (#581 / #595)

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm).

• Tested Python versions: (Cpython) 3.6, 3.7, 3.8, 3.9.

Known issues

• Open-MPI does not work with direct MPI job launches in mpi4py comms mode, since it does not support nested
MPI launches (Either use local mode or Balsam Executor).

• See known issues section in the documentation for more issues.

262 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

6.6.16 Release 0.7.1

Date
Oct 15, 2020

Dependencies:

• psutils is now a required dependency. (#478 #491)

API additions:

• Executor updates:

– Addition of a zero-resource worker option for persistent gens (does not allocate nodes to gen). (#500)

– Multiple applications can be registered to the Executor (and submitted) by name. (#498)

– Wait function added to Tasks. (#499)

• Gen directories can now be created with options analogous to those for sim dirs. (#349 / #489)

Other changes:

• Improve comms efficiency (Repack fields when NumPy version 1.15+). (#511)

• Fix multiprocessing error on macOS/Python3.8 (Use ‘fork’ instead of ‘spawn’). (#502 / #503)

Updates to example functions:

• Allow APOSMM to trigger ensemble exit when condition reached. (#507)

• Improvement in how persistent APOSMM shuts down subprocesses (preventing PETSc MPI-abort). (#478)

Documentation:

• APOSMM Tutorial added. (#468)

• Writing guide for user functions added to docs (e.g., creating sim_f, gen_f, alloc_f). (#510)

• Addition of posters and presentations section to docs (inc. Jupyter notebooks/binder links). (#492 #497)

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), and Bridges (HPE system at PSC).

• Cori (Cray XC40/Slurm) was not tested with release code due to system issues.

• Tested Python versions: (Cpython) 3.5, 3.6, 3.7, 3.8.

Known issues

• We currently recommend running in Central mode on Bridges, as distributed runs are experiencing hangs.

• Open-MPI does not work with direct MPI job launches in mpi4py comms mode, since it does not support nested
MPI launches (Either use local mode or Balsam Executor).

• See known issues section in the documentation for more issues.

6.6. Release Notes 263

libEnsemble User Manual, Release 1.3.0+dev

6.6.17 Release 0.7.0

Date
May 22, 2020

Breaking API changes:

• Job_controller/Job renamed to Executor/Task and launch function to submit. (#285)

• Executors/Resources/Utils moved into sub-packages. utils now in package tools. (#285)

• sim/gen/alloc support functions moved into tools sub-package. (#285)

• Restructuring of sim directory creation with libE_specs configuration options. E.g: When sim_input_dir
is given, directories for each sim are created. (#267)

• User can supply a file called node_list (replaces worker_list). (#455)

API additions:

• Added gen_funcs.rc configuration framework with option to select APOSMM Optimizers for import. (#444)

• Provide alloc_specs defaults via alloc_funcs.defaults module. (#325)

• Added extra_args option to the Executor submit function to allow addition of arbitrary MPI runner options.
(#445)

• Added custom_info argument to MPI Executor to allow overriding of detected settings. (#448)

• Added libE_specs option to disable log files. (#368)

Other changes:

• Added libEnsemble Conda package, hosted on conda-forge.

• Bugfix: Intermittent failures with repeated libE calls under mpi4py comms. Every libE call now uses its own
duplicate of provided communicator and closes out. (#373/#387)

• More accurate timing in libE_stats.txt. (#318)

• Addition of new post-processing scripts.

Updates to example functions:

• Persistent APOSMM is now the recommended APOSMM (aposmm.py renamed to old_aposmm.py). (#435)

• New alloc/gen func: Finite difference parameters with noise estimation. (#350)

• New example gen func: Tasmanian UQ generator. (#351)

• New example gen func: Deap/NSGA2 generator. (#407)

• New example gen func to interface with VTMOP.

• New example sim func: Borehole. (#367)

• New example use-case: WarpX/APOSMM. (#425)

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), Cori (Cray XC40/Slurm), and Bridges (HPE system at PSC).

• Tested Python versions: (Cpython) 3.5, 3.6, 3.7, 3.8.

Known issues

• We currently recommended running in Central mode on Bridges as distributed runs are experiencing hangs.

264 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

• See known issues section in the documentation for more issues.

6.6.18 Release 0.6.0

Date
December 4, 2019

API changes:

• sim/gen/alloc_specs options that do not directly involve these routines are moved to libE_specs (see docs). (#266,
#269)

• sim/gen/alloc_specs now require user-defined attributes to be added under the 'user' field (see docs and exam-
ples). (#266, #269)

• Addition of a utils module to help users create calling scripts. Includes an argument parser and utility functions.
(#308)

• check_inputs() function is moved to the utils module. (#308)

• The libE_specs option nprocesses has been changed to nworkers. (#235)

New example functions:

• Addition of a persistent APOSMM generator function. (#217)

Other changes:

• Overhaul of documentation, including HPC platform guides and a new pdf structure. (inc. #232, #282)

• Addition of OpenMP threading and GPU support to forces test. (#250)

• Balsam job_controller now tested on Travis. (#47)

Note

• Tested platforms include Linux, MacOS, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), Bebop (Cray
CS400/Slurm), and Cori (Cray XC40/Slurm).

• Tested Python versions: (Cpython) 3.5, 3.6, 3.7

Known issues

• These are unchanged from v0.5.0.

• A known issues section has now been added to the documentation.

6.6.19 Release 0.5.2

Date
August 19, 2019

• Code has been restructured to meet xSDK package policies for interoperable ECP software (version 0.5.0). #208

• The use of MPI.COMM_WORLD has been removed. Uses a duplicate of COMM_WORLD if no communicator
passed (any process not in communicator returns with an exit code of 3). #108

• All output from libEnsemble goes via logger. MANAGER_WARNING level added. This level and above are
echoed to stderr by default. API option to change echo level.

• Simulation directories are created only during sim_f calls are suffixed by _worker. #146

6.6. Release Notes 265

libEnsemble User Manual, Release 1.3.0+dev

• New user function libE.check_inputs() can be used to check valid configuration of inputs. Can be called in serial
or under MPI (see libE API). #65

• Installation option has been added to install dependencies used in tests pip install libensemble[extras].

• A profiling option has been added to sim_specs. #170

• Results comparison scripts have been included for convenience.

Note

• Tested platforms include Linux, MacOS (New), Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), and
Bebop (Cray CS400/Slurm).

• Tested Python versions: (Cpython) 3.5, 3.6, 3.7

• Note Support has been removed for Python 3.4 since it is officially retired. Also NumPy has removed support.

Known issues

• These are unchanged from v0.5.0.

6.6.20 Release 0.5.1

Date
July 11, 2019

• Fixed LSF resource detection for large jobs on LSF systems (e.g., Summit). #184

• Added support for macOS. #182

• Improved the documentation (including addition of beginner’s tutorial and FAQ).

Note

• Tested platforms include Local Linux, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), and Bebop (Cray
CS400/Slurm).

• Tested Python versions: (Cpython) 3.4, 3.5, 3.6, 3.7.

Known issues

• These are unchanged from v0.5.0.

6.6.21 Release 0.5.0

Date
May 22, 2019

• Added local (multiprocessing) and TCP options for manager/worker communications, in addition to mpi4py.
(#42).

• Example: libEnsemble can be run on MOM/launch nodes (e.g., those of ALCF/Theta & OLCF/Summit) and
can remotely detect compute resources.

• Example: libEnsemble can be run on a system without MPI.

• Example: libEnsemble can be run with a local manager and remote TCP workers.

• Added support for Summit/LSF scheduler in job controller.

• MPI job controller detects and retries launches on failure; adding resilience. (#143)

• Job controller supports option to extract/print job times in libE_stats.txt. (#136)

266 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

• Default logging level changed to INFO. (#164)

• Logging interface added, which allows user to change logging level and file. (#110)

• All worker logging and calculation stats are routed through manager.

• libEnsemble can be run without a gen_func, for example, when using a previously computed random sample.
(#122)

• Aborts dump persis_info with the history.

Note

• This version no longer supports Python 2.

• Tested platforms include Local Linux, Theta (Cray XC40/Cobalt), Summit (IBM Power9/LSF), and Bebop (Cray
CS400/Slurm).

Known issues

• Open-MPI does not work with direct MPI job launches in mpi4py comms mode, since it does not support nested
MPI launches (Either use local mode or Balsam job controller).

• Local comms mode (multiprocessing) may fail if MPI is initialized before forking processors. This is thought to
be responsible for issues combining with PETSc.

• Remote detection of logical cores via LSB_HOSTS (e.g., Summit) returns number of physical cores since SMT
info not available.

• TCP mode does not support (1) more than one libEnsemble call in a given script or (2) the auto-resources option
to the job controller.

6.6.22 Release 0.4.1

Date
February 20, 2019

• Logging no longer uses root logger (also added option to change libEnsemble log level). (#105)

• Added wait_on_run option for job controller launch to block until jobs have started. (#111)

• persis_info can be passed to sim as well as gen functions. (#112)

• Postprocessing scripts added to create performance/utilization graphs. (#102)

• New scaling test added (not part of current CI test suite). (#114)

6.6.23 Release 0.4.0

Date
November 7, 2018

• Separated job controller classes into different modules including a base class (API change).

• Added central_mode run option to distributed type (MPI) job_controllers (API addition). (#93)

• Made poll and kill job methods (API change).

• In job_controller, set_kill_mode is removed and replaced by a wait argument for a hard kill (API change).

• Removed register module - incorporated into job_controller (API change).

• APOSMM has improved asynchronicity when batch mode is false (with new example). (#96)

6.6. Release Notes 267

libEnsemble User Manual, Release 1.3.0+dev

• Manager errors (instead of hangs) when alloc_f or gen_f don’t return work when all workers are idle. (#95)

Known issues

• Open-MPI is not supported with direct MPI launches since nested MPI launches are not supported.

6.6.24 Release 0.3.0

Date
September 7, 2018

• Issues with killing jobs have been fixed. (#21)

• Fixed job_controller manager_poll to work with multiple jobs. (#62)

• API change: persis_info now included as an argument to libE and is returned from libE instead of gen_info

• Gen funcs: aposmm_logic module renamed to aposmm.

• New example gen and allocation functions.

• Updated Balsam launch script (with new Balsam workflow).

• History is dumped to file on manager or worker exception and MPI aborted (with exit code 1). (#46)

• Default logging level changed to DEBUG and redirected to file ensemble.log.

• Added directory of standalone tests (comms, job kills, and nested MPI launches).

• Improved and sped up unit tests. (#68)

• Considerable documentation enhancements.

Known issues

• Open-MPI is not supported with direct MPI launches since nested MPI launches are not supported.

6.6.25 Release 0.2.0

Date
June 29, 2018

• Added job_controller interface (for portable user scripts).

• Added support for using the Balsam job manager. Enables portability and dynamic scheduling.

• Added autodetection of system resources.

• Scalability testing: Ensemble performed with 1023 workers on Theta (Cray XC40) using Balsam.

• Tested MPI libraries: MPICH and Intel MPI.

Known issues

• Killing MPI jobs does not work correctly on some systems (including Cray XC40 and CS400). In these cases,
libEnsemble continues, but processes remain running.

• Open-MPI does not work correctly with direct launches (and has not been tested with Balsam).

268 Chapter 6. Appendices

libEnsemble User Manual, Release 1.3.0+dev

6.6.26 Release 0.1.0

Date
November 30, 2017

• Initial release.

6.6. Release Notes 269

Python Module Index

a
alloc_support, 92
aposmm_localopt_support, 213

b
borehole, 230

c
chwirut1, 228

e
env_resources, 145
executor, 75
executor_hworld, 230

f
fast_alloc, 237

g
give_sim_work_first, 234

l
libensemble.executors.balsam_executor, 84
libensemble.history, 135
libensemble.libE, 9
logger, 36

m
manager, 131
mpi_executor, 80
mpi_resources, 148

n
node_resources, 147
noisy_vector_mapping, 228

p
periodic_func, 229
persistent_aposmm, 210
persistent_fd_param_finder, 223

persistent_sampling, 202
persistent_sampling_var_resources, 209
persistent_support, 91
persistent_surmise_calib, 224
persistent_tasmanian, 214

r
resources.resources, 137
resources.scheduler, 50
resources.worker_resources, 141
rset_resources, 140

s
sampling, 197
six_hump_camel, 224
start_only_persistent, 238
start_persistent_local_opt_gens, 242

t
tools, 89

u
uniform_or_localopt, 214

w
worker, 133

270

Index

Symbols
__init__() (env_resources.EnvResources method), 145
__init__() (libensem-

ble.executors.balsam_executor.BalsamExecutor
method), 86

__init__() (libensemble.executors.executor.Executor
method), 75

__init__() (libensemble.history.History method), 135
__init__() (libensem-

ble.tools.alloc_support.AllocSupport method),
63

__init__() (manager.Manager method), 132
__init__() (resources.resources.GlobalResources

method), 139
__init__() (resources.resources.Resources method),

137
__init__() (resources.scheduler.ResourceScheduler

method), 50
__init__() (resources.worker_resources.ResourceManager

method), 141
__init__() (resources.worker_resources.WorkerResources

method), 143
__init__() (rset_resources.RSetResources method),

140
__init__() (worker.Worker method), 134

A
abbrev_nodenames() (env_resources.EnvResources

static method), 146
abort_on_exception (libensemble.specs.LibeSpecs at-

tribute), 21
add_comm_info() (re-

sources.resources.GlobalResources method),
140

add_comm_info() (resources.resources.Resources
method), 138

add_random_streams() (libensem-
ble.ensemble.Ensemble method), 9

add_unique_random_streams() (in module tools), 89
all_gen_informed() (alloc_support.AllocSupport

method), 95

all_gen_informed() (libensem-
ble.tools.alloc_support.AllocSupport method),
65

all_sim_ended() (alloc_support.AllocSupport
method), 94

all_sim_ended() (libensem-
ble.tools.alloc_support.AllocSupport method),
65

all_sim_started() (alloc_support.AllocSupport
method), 94

all_sim_started() (libensem-
ble.tools.alloc_support.AllocSupport method),
65

alloc_f (libensemble.specs.AllocSpecs attribute), 26
alloc_support

module, 92
AllocException, 92
AllocSupport (class in alloc_support), 92
AllocSupport (class in libensem-

ble.tools.alloc_support), 63
aposmm() (in module persistent_aposmm), 210
aposmm_localopt_support

module, 213
assign_resources() (alloc_support.AllocSupport

method), 93
assign_resources() (libensem-

ble.tools.alloc_support.AllocSupport method),
63

assign_resources() (re-
sources.scheduler.ResourceScheduler method),
50

assign_rsets() (resources.worker_resources.ResourceManager
method), 142

aurora (libensemble.resources.platforms.Known_platforms
attribute), 31

authkey (libensemble.specs.LibeSpecs attribute), 21
avail_worker_ids() (alloc_support.AllocSupport

method), 93
avail_worker_ids() (libensem-

ble.tools.alloc_support.AllocSupport method),
63

271

libEnsemble User Manual, Release 1.3.0+dev

B
BalsamExecutor (class in libensem-

ble.executors.balsam_executor), 85
BalsamTask (class in libensem-

ble.executors.balsam_executor), 88
batched_history_matching() (in module persis-

tent_sampling), 202
best_split() (rset_resources.RSetResources static

method), 141
borehole

module, 230
borehole() (in module borehole), 230
borehole_func() (in module borehole), 230

C
calc_dir_id_width (libensemble.specs.LibeSpecs at-

tribute), 21
cancel() (libensemble.executors.executor.Task method),

79
cancelled() (libensemble.executors.executor.Task

method), 79
chwirut1

module, 228
chwirut_eval() (in module chwirut1), 228
close() (aposmm_localopt_support.LocalOptInterfacer

method), 213
cobalt_abbrev_nodenames()

(env_resources.EnvResources static method),
146

comms (libensemble.specs.LibeSpecs attribute), 21
cores_per_node (libensem-

ble.resources.platforms.Platform attribute),
29

count_gens() (alloc_support.AllocSupport method), 93
count_gens() (libensem-

ble.tools.alloc_support.AllocSupport method),
64

count_persis_gens() (alloc_support.AllocSupport
method), 93

count_persis_gens() (libensem-
ble.tools.alloc_support.AllocSupport method),
64

create_machinefile() (in module mpi_resources),
149

crusher (libensemble.resources.platforms.Known_platforms
attribute), 31

D
decide_where_to_start_localopt() (in module per-

sistent_aposmm), 212
dedicated_mode (libensemble.specs.LibeSpecs at-

tribute), 21
destroy() (aposmm_localopt_support.LocalOptInterfacer

method), 213

disable_log_files (libensemble.specs.LibeSpecs at-
tribute), 21

disable_resource_manager (libensem-
ble.specs.LibeSpecs attribute), 21

doihave_gpus() (resources.worker_resources.WorkerResources
method), 144

done() (libensemble.executors.executor.Task method),
79

dry_run (libensemble.specs.LibeSpecs attribute), 21

E
enforce_worker_core_bounds (libensem-

ble.specs.LibeSpecs attribute), 21
Ensemble (class in libensemble.ensemble), 4
ensemble_copy_back (libensemble.specs.LibeSpecs at-

tribute), 21
ensemble_dir_path (libensemble.specs.LibeSpecs at-

tribute), 21
env_resources

module, 145
EnvResources (class in env_resources), 145
eprint() (in module tools), 89
even_assignment() (rset_resources.RSetResources

static method), 141
exception() (libensemble.executors.executor.Task

method), 79
executor

module, 75
Executor (class in libensemble.executors.executor), 75
executor_hworld

module, 230
executor_hworld() (in module executor_hworld), 230
expand_list() (rset_resources.RSetResources static

method), 141

F
fast_alloc

module, 237
fd_param_finder() (in module persis-

tent_fd_param_finder), 223
file_exists_in_workdir() (libensem-

ble.executors.executor.Task method), 77
final_gen_send (libensemble.specs.LibeSpecs at-

tribute), 21
ForkablePdb (class in tools), 89
free_rsets() (resources.worker_resources.ResourceManager

method), 142
from_json() (libensemble.ensemble.Ensemble method),

8
from_toml() (libensemble.ensemble.Ensemble method),

8
from_yaml() (libensemble.ensemble.Ensemble method),

8

272 Index

libEnsemble User Manual, Release 1.3.0+dev

frontier (libensemble.resources.platforms.Known_platforms
attribute), 31

func_wrapper() (in module noisy_vector_mapping),
228

func_wrapper() (in module periodic_func), 229

G
gen_borehole_input() (in module borehole), 230
gen_dir_copy_files (libensemble.specs.LibeSpecs at-

tribute), 21
gen_dir_symlink_files (libensem-

ble.specs.LibeSpecs attribute), 21
gen_dirs_make (libensemble.specs.LibeSpecs at-

tribute), 22
gen_f (libensemble.specs.GenSpecs attribute), 14
gen_input_dir (libensemble.specs.LibeSpecs at-

tribute), 22
gen_max (libensemble.specs.ExitCriteria attribute), 34
gen_num_gpus (libensemble.specs.LibeSpecs attribute),

22
gen_num_procs (libensemble.specs.LibeSpecs at-

tribute), 22
gen_on_manager (libensemble.specs.LibeSpecs at-

tribute), 22
gen_work() (alloc_support.AllocSupport method), 94
gen_work() (libensem-

ble.tools.alloc_support.AllocSupport method),
64

gen_workers (libensemble.specs.LibeSpecs attribute),
22

generic_rocm (libensem-
ble.resources.platforms.Known_platforms
attribute), 31

get_2D_duplicate_indices() (in module persis-
tent_tasmanian), 214

get_2D_insert_indices() (in module persis-
tent_tasmanian), 214

get_cobalt_nodelist()
(env_resources.EnvResources static method),
147

get_cpu_cores() (in module node_resources), 147
get_global_nodelist() (re-

sources.resources.GlobalResources static
method), 140

get_group_list() (rset_resources.RSetResources
static method), 141

get_H0() (in module persistent_tasmanian), 215
get_hostlist() (in module mpi_resources), 149
get_index_list() (re-

sources.worker_resources.ResourceManager
static method), 142

get_level() (in module logger), 36
get_local_nodelist() (re-

sources.worker_resources.WorkerResources

static method), 144
get_lsf_nodelist() (env_resources.EnvResources

static method), 147
get_lsf_nodelist_frm_shortform()

(env_resources.EnvResources static method),
147

get_MPI_runner() (in module mpi_resources), 148
get_MPI_variant() (in module mpi_resources), 148
get_nodelist() (env_resources.EnvResources

method), 146
get_partitioned_nodelist()

(rset_resources.RSetResources static method),
141

get_pbs_nodelist() (env_resources.EnvResources
static method), 147

get_resources() (in module mpi_resources), 148
get_rsets_on_a_node()

(rset_resources.RSetResources static method),
141

get_slots_as_string() (re-
sources.worker_resources.WorkerResources
method), 143

get_slurm_nodelist() (env_resources.EnvResources
static method), 146

get_sparse_grid_specs() (in module persis-
tent_tasmanian), 215

get_split_list() (rset_resources.RSetResources
static method), 141

get_state() (in module persistent_tasmanian), 215
get_stderr_level() (in module logger), 36
get_sub_node_resources() (in module

node_resources), 147
get_workers2assign2()

(rset_resources.RSetResources static method),
141

give_sim_work_first
module, 234

give_sim_work_first() (in module fast_alloc), 237
give_sim_work_first() (in module

give_sim_work_first), 234
GlobalResources (class in resources.resources), 138
globus_compute_endpoint (libensem-

ble.specs.GenSpecs attribute), 15
globus_compute_endpoint (libensem-

ble.specs.SimSpecs attribute), 12
gpu_env_fallback (libensem-

ble.resources.platforms.Platform attribute),
29

gpu_setting_name (libensem-
ble.resources.platforms.Platform attribute),
29

gpu_setting_type (libensem-
ble.resources.platforms.Platform attribute),
29

Index 273

libEnsemble User Manual, Release 1.3.0+dev

gpus_per_node (libensem-
ble.resources.platforms.Platform attribute),
29

grow_H() (libensemble.history.History method), 136

H
H_file_prefix (libensemble.specs.LibeSpecs at-

tribute), 21
History (class in libensemble.history), 135

I
init_resources() (resources.resources.Resources

class method), 138
initialize_APOSMM() (in module persistent_aposmm),

212
inputs (libensemble.specs.GenSpecs attribute), 15
inputs (libensemble.specs.SimSpecs attribute), 12
ip (libensemble.specs.LibeSpecs attribute), 22
is_nodelist_shortnames() (re-

sources.resources.GlobalResources static
method), 140

iterate() (aposmm_localopt_support.LocalOptInterfacer
method), 213

K
kill() (libensemble.executors.balsam_executor.BalsamTask

method), 89
kill() (libensemble.executors.executor.Task method),

79
kill_canceled_sims (libensemble.specs.LibeSpecs at-

tribute), 22

L
latin_hypercube_sample() (in module sampling),

197
lex_le() (in module persistent_tasmanian), 214
libE() (in module libensemble.libE), 11
libensemble.executors.balsam_executor

module, 84
libensemble.history

module, 135
libensemble.libE

module, 9
LocalOptInterfacer (class in

aposmm_localopt_support), 213
logger

module, 36
logical_cores_per_node (libensem-

ble.resources.platforms.Platform attribute),
29

M
manager

module, 131
Manager (class in manager), 132
manager_kill_received() (libensem-

ble.executors.executor.Executor method),
76

manager_kill_received() (libensem-
ble.executors.mpi_executor.MPIExecutor
method), 82

manager_main() (in module manager), 131
manager_poll() (libensem-

ble.executors.executor.Executor method),
76

manager_poll() (libensem-
ble.executors.mpi_executor.MPIExecutor
method), 83

module
alloc_support, 92
aposmm_localopt_support, 213
borehole, 230
chwirut1, 228
env_resources, 145
executor, 75
executor_hworld, 230
fast_alloc, 237
give_sim_work_first, 234
libensemble.executors.balsam_executor, 84
libensemble.history, 135
libensemble.libE, 9
logger, 36
manager, 131
mpi_executor, 80
mpi_resources, 148
node_resources, 147
noisy_vector_mapping, 228
periodic_func, 229
persistent_aposmm, 210
persistent_fd_param_finder, 223
persistent_sampling, 202
persistent_sampling_var_resources, 209
persistent_support, 91
persistent_surmise_calib, 224
persistent_tasmanian, 214
resources.resources, 137
resources.scheduler, 50
resources.worker_resources, 141
rset_resources, 140
sampling, 197
six_hump_camel, 224
start_only_persistent, 238
start_persistent_local_opt_gens, 242
tools, 89
uniform_or_localopt, 214
worker, 133

mpi_comm (libensemble.specs.LibeSpecs attribute), 22

274 Index

libEnsemble User Manual, Release 1.3.0+dev

mpi_executor
module, 80

mpi_resources
module, 148

mpi_runner (libensemble.resources.platforms.Platform
attribute), 29

MPIExecutor (class in libensem-
ble.executors.mpi_executor), 80

MPIResourcesException, 148

N
node_resources

module, 147
noisy_function() (in module noisy_vector_mapping),

228
noisy_vector_mapping

module, 228
num_resource_sets (libensemble.specs.LibeSpecs at-

tribute), 22
nworkers (libensemble.specs.LibeSpecs attribute), 22

O
only_persistent_gens() (in module

start_only_persistent), 238
outputs (libensemble.specs.AllocSpecs attribute), 26
outputs (libensemble.specs.GenSpecs attribute), 15
outputs (libensemble.specs.SimSpecs attribute), 12

P
parse_args() (in module tools), 89
periodic_func

module, 229
periodic_func() (in module periodic_func), 229
perlmutter_c (libensem-

ble.resources.platforms.Known_platforms
attribute), 31

perlmutter_g (libensem-
ble.resources.platforms.Known_platforms
attribute), 31

persis_in (libensemble.specs.GenSpecs attribute), 15
persis_in (libensemble.specs.SimSpecs attribute), 13
persistent_aposmm

module, 210
persistent_fd_param_finder

module, 223
persistent_request_shutdown() (in module persis-

tent_sampling), 202
persistent_sampling

module, 202
persistent_sampling_var_resources

module, 209
persistent_six_hump_camel() (in module

six_hump_camel), 224
persistent_support

module, 91
persistent_surmise_calib

module, 224
persistent_tasmanian

module, 214
persistent_uniform() (in module persis-

tent_sampling), 202
persistent_uniform_final_update() (in module

persistent_sampling), 202
persistent_uniform_with_cancellations() (in

module persistent_sampling), 203
PersistentSupport (class in persistent_support), 91
platform (libensemble.specs.LibeSpecs attribute), 22
platform_specs (libensemble.specs.LibeSpecs at-

tribute), 22
points_by_priority() (alloc_support.AllocSupport

method), 95
points_by_priority() (libensem-

ble.tools.alloc_support.AllocSupport method),
65

polaris (libensemble.resources.platforms.Known_platforms
attribute), 31

poll() (libensemble.executors.balsam_executor.BalsamTask
method), 88

poll() (libensemble.executors.executor.Task method),
78

polling_loop() (libensem-
ble.executors.executor.Executor method),
76

polling_loop() (libensem-
ble.executors.mpi_executor.MPIExecutor
method), 83

port (libensemble.specs.LibeSpecs attribute), 23
profile (libensemble.specs.LibeSpecs attribute), 23

R
read_file_in_workdir() (libensem-

ble.executors.executor.Task method), 78
read_stderr() (libensemble.executors.executor.Task

method), 78
read_stdout() (libensemble.executors.executor.Task

method), 78
ready() (libensemble.ensemble.Ensemble method), 8
recv() (in module libensem-

ble.tools.persistent_support.PersistentSupport),
56

recv() (persistent_support.PersistentSupport method),
92

register_app() (libensem-
ble.executors.balsam_executor.BalsamExecutor
method), 86

register_app() (libensem-
ble.executors.executor.Executor method),
75

Index 275

libEnsemble User Manual, Release 1.3.0+dev

register_app() (libensem-
ble.executors.mpi_executor.MPIExecutor
method), 83

remove_nodes() (resources.resources.GlobalResources
static method), 140

request_cancel_sim_ids() (in module libensem-
ble.tools.persistent_support.PersistentSupport),
57

request_cancel_sim_ids() (persis-
tent_support.PersistentSupport method),
92

resource_info (libensemble.specs.LibeSpecs at-
tribute), 23

ResourceManager (class in re-
sources.worker_resources), 141

Resources (class in resources.resources), 137
resources.resources

module, 137
resources.scheduler

module, 50
resources.worker_resources

module, 141
ResourceScheduler (class in resources.scheduler), 50
result() (libensemble.executors.executor.Task method),

78
reuse_output_dir (libensemble.specs.LibeSpecs

attribute), 23
revoke_allocation() (libensem-

ble.executors.balsam_executor.BalsamExecutor
method), 87

rset_resources
module, 140

RSetResources (class in rset_resources), 140
run() (libensemble.ensemble.Ensemble method), 8
run() (manager.Manager method), 133
run() (worker.Worker method), 134
run_external_localopt() (in module

aposmm_localopt_support), 214
run_local_dfols() (in module

aposmm_localopt_support), 214
run_local_ibcdfo_pounders() (in module

aposmm_localopt_support), 214
run_local_nlopt() (in module

aposmm_localopt_support), 213
run_local_scipy_opt() (in module

aposmm_localopt_support), 214
run_local_tao() (in module

aposmm_localopt_support), 213
runner_name (libensem-

ble.resources.platforms.Platform attribute),
29

running() (libensemble.executors.executor.Task
method), 79

S
safe_mode (libensemble.specs.LibeSpecs attribute), 23
sampling

module, 197
save_every_k_gens (libensemble.specs.LibeSpecs at-

tribute), 23
save_every_k_sims (libensemble.specs.LibeSpecs at-

tribute), 24
save_H_and_persis_on_abort (libensem-

ble.specs.LibeSpecs attribute), 23
save_H_on_completion (libensemble.specs.LibeSpecs

attribute), 23
save_H_with_date (libensemble.specs.LibeSpecs

attribute), 23
save_libE_output() (in module tools), 91
save_output() (libensemble.ensemble.Ensemble

method), 9
scheduler_match_slots (libensem-

ble.resources.platforms.Platform attribute),
30

scheduler_opts (libensemble.specs.LibeSpecs at-
tribute), 24

send() (in module libensem-
ble.tools.persistent_support.PersistentSupport),
55

send() (persistent_support.PersistentSupport method),
91

send_recv() (in module libensem-
ble.tools.persistent_support.PersistentSupport),
56

send_recv() (persistent_support.PersistentSupport
method), 92

set_directory() (in module logger), 36
set_env_to_gpus() (re-

sources.worker_resources.WorkerResources
method), 143

set_env_to_slots() (re-
sources.worker_resources.WorkerResources
method), 143

set_filename() (in module logger), 36
set_gen_procs_gpus() (re-

sources.worker_resources.WorkerResources
method), 144

set_level() (in module logger), 36
set_resource_manager() (re-

sources.resources.Resources method), 138
set_rset_team() (re-

sources.worker_resources.WorkerResources
method), 144

set_slot_count() (re-
sources.worker_resources.WorkerResources
method), 144

set_stderr_level() (in module logger), 36
set_worker_resources() (re-

276 Index

libEnsemble User Manual, Release 1.3.0+dev

sources.resources.Resources method), 138
shortnames() (env_resources.EnvResources method),

146
sim_dir_copy_files (libensemble.specs.LibeSpecs at-

tribute), 24
sim_dir_symlink_files (libensem-

ble.specs.LibeSpecs attribute), 24
sim_dirs_make (libensemble.specs.LibeSpecs at-

tribute), 24
sim_f (libensemble.specs.SimSpecs attribute), 13
sim_input_dir (libensemble.specs.LibeSpecs at-

tribute), 24
sim_max (libensemble.specs.ExitCriteria attribute), 34
sim_work() (alloc_support.AllocSupport method), 93
sim_work() (libensem-

ble.tools.alloc_support.AllocSupport method),
64

six_hump_camel
module, 224

six_hump_camel() (in module six_hump_camel), 224
six_hump_camel_simple() (in module

six_hump_camel), 224
skip_canceled_points() (al-

loc_support.AllocSupport method), 95
skip_canceled_points() (libensem-

ble.tools.alloc_support.AllocSupport method),
65

sparse_grid_async() (in module persis-
tent_tasmanian), 215

sparse_grid_batched() (in module persis-
tent_tasmanian), 215

spock (libensemble.resources.platforms.Known_platforms
attribute), 31

start_only_persistent
module, 238

start_persistent_local_opt_gens
module, 242

start_persistent_local_opt_gens() (in module
start_persistent_local_opt_gens), 242

stats_fmt (libensemble.specs.LibeSpecs attribute), 24
stderr_exists() (libensemble.executors.executor.Task

method), 78
stdout_exists() (libensemble.executors.executor.Task

method), 78
stop_val (libensemble.specs.ExitCriteria attribute), 34
submit() (libensemble.executors.balsam_executor.BalsamExecutor

method), 87
submit() (libensemble.executors.executor.Executor

method), 76
submit() (libensemble.executors.mpi_executor.MPIExecutor

method), 81
submit_allocation() (libensem-

ble.executors.balsam_executor.BalsamExecutor
method), 86

summit (libensemble.resources.platforms.Known_platforms
attribute), 31

sunspot (libensemble.resources.platforms.Known_platforms
attribute), 31

surmise_calib() (in module persis-
tent_surmise_calib), 224

T
Task (class in libensemble.executors.executor), 77
task_partition() (in module mpi_resources), 148
term_test() (manager.Manager method), 133
term_test_gen_max() (manager.Manager method),

132
term_test_sim_max() (manager.Manager method),

132
term_test_stop_val() (manager.Manager method),

132
term_test_wallclock() (manager.Manager method),

132
test_any_gen() (alloc_support.AllocSupport method),

93
test_any_gen() (libensem-

ble.tools.alloc_support.AllocSupport method),
64

threaded (libensemble.specs.GenSpecs attribute), 15
threaded (libensemble.specs.SimSpecs attribute), 13
tiles_per_gpu (libensem-

ble.resources.platforms.Platform attribute),
29

tools
module, 89

trim_H() (libensemble.history.History method), 136

U
uniform_nonblocking() (in module persis-

tent_sampling), 202
uniform_or_localopt

module, 214
uniform_or_localopt() (in module uni-

form_or_localopt), 214
uniform_random_sample() (in module sampling), 197
uniform_random_sample_cancel() (in module sam-

pling), 197
uniform_random_sample_obj_components() (in

module sampling), 197
uniform_random_sample_with_var_priorities_and_resources()

(in module sampling), 197
uniform_random_sample_with_variable_resources()

(in module sampling), 197
uniform_sample() (in module persis-

tent_sampling_var_resources), 209
uniform_sample_diff_simulations() (in module

persistent_sampling_var_resources), 209

Index 277

libEnsemble User Manual, Release 1.3.0+dev

uniform_sample_with_procs_gpus() (in module per-
sistent_sampling_var_resources), 209

uniform_sample_with_sim_gen_resources() (in
module persistent_sampling_var_resources),
209

uniform_sample_with_var_gpus() (in module per-
sistent_sampling_var_resources), 209

uniform_sample_with_var_priorities() (in mod-
ule persistent_sampling_var_resources), 209

update_history_dist() (in module persis-
tent_aposmm), 213

update_history_f() (libensemble.history.History
method), 135

update_history_to_gen() (libensem-
ble.history.History method), 136

update_history_x_in() (libensemble.history.History
method), 136

update_history_x_out() (libensem-
ble.history.History method), 136

update_scheduler_opts() (re-
sources.resources.GlobalResources method),
140

use_persis_return_gen (libensem-
ble.specs.LibeSpecs attribute), 24

use_persis_return_sim (libensem-
ble.specs.LibeSpecs attribute), 24

use_tiles_as_gpus (libensemble.specs.LibeSpecs at-
tribute), 24

use_worker_dirs (libensemble.specs.LibeSpecs at-
tribute), 24

use_workflow_dir (libensemble.specs.LibeSpecs
attribute), 24

user (libensemble.specs.AllocSpecs attribute), 26
user (libensemble.specs.GenSpecs attribute), 15
user (libensemble.specs.SimSpecs attribute), 13

W
wait() (libensemble.executors.balsam_executor.BalsamTask

method), 88
wait() (libensemble.executors.executor.Task method),

78
wallclock_max (libensemble.specs.ExitCriteria at-

tribute), 34
workdir_exists() (libensem-

ble.executors.executor.Task method), 77
worker

module, 133
Worker (class in worker), 133
worker_cmd (libensemble.specs.LibeSpecs attribute), 24
worker_main() (in module worker), 133
worker_timeout (libensemble.specs.LibeSpecs at-

tribute), 24
workerID (libensemble.specs.LibeSpecs attribute), 24

WorkerResources (class in re-
sources.worker_resources), 142

workers (libensemble.specs.LibeSpecs attribute), 24
workflow_dir_path (libensemble.specs.LibeSpecs at-

tribute), 24

Z
zero_resource_workers (libensem-

ble.specs.LibeSpecs attribute), 25

278 Index

	libEnsemble: A complete toolkit for dynamic ensembles of calculations
	Installation
	Basic Usage
	Resources

	Constructing Workflows
	Running an Ensemble
	Configuring libEnsemble
	Simulation Specs
	Generator Specs
	General Specs
	Scheduler Options
	Overriding Resource Auto-Detection
	Formatting Options for libE_stats File

	Allocation Specs
	Platform Specs
	platform_specs
	platform
	Known Platforms List

	persis_info
	Exit Criteria

	Output Management
	Default Log Files
	Logger Configuration
	Analysis Utilities

	History Array
	Overview
	Reserved Fields
	Example Workflow updating History

	Resource Manager
	Zero-resource workers
	Placing zero-resource functions on a fixed worker

	Dynamic Assignment of Resources
	Overview
	Variable resource assignment
	Variable Size simulations
	Accessing resources from the simulation function
	Resource Scheduler Options
	Varying generator resources

	Example scenarios
	Persistent generator
	Using large resource sets
	Setting more resource sets than workers

	Resource Detection
	Scheduler Module
	Worker Resources Module

	Writing User Functions
	Generator Functions
	Writing a Generator
	Persistent Generators
	Active receive mode
	Cancelling Simulations
	Modification of existing points
	Generator initiated shutdown
	Examples

	Simulator Functions
	Writing a Simulator
	Executor
	Persistent Simulators

	Allocation Functions
	User Function API
	sim_f API
	Parameters:
	Returns:

	gen_f API
	Parameters:
	Returns:

	alloc_f API
	Parameters:
	Returns:

	calc_status
	Work Dictionary
	Worker Array

	Executors
	Executor Overview
	Basic usage
	Advanced Features

	Base Executor - Local apps
	MPI Executor - MPI apps
	Class-specific Attributes

	Balsam Executor - Remote apps

	Convenience Tools and Functions

	Running libEnsemble
	Introduction
	Further Command Line Options
	Persistent Workers
	Running generator on the manager
	Environment Variables
	liberegister / libesubmit
	Further Run Information

	Running on HPC Systems
	Central vs. Distributed
	Configuring the Run
	Systems with Launch/MOM Nodes
	Balsam - Externally Managed Applications
	Mapping Tasks to Resources
	Zero-resource workers

	Overriding Auto-Detection
	Globus Compute - Remote User Functions
	Instructions for Specific Platforms
	Aurora
	Configuring Python and Installation
	Example
	Using tiles as GPUs
	Demonstration

	Bebop
	Configuring Python
	Installing libEnsemble and Dependencies
	Job Submission
	Interactive Runs
	Batch Runs

	Debugging Strategies
	Additional Information

	Frontier
	Installing libEnsemble
	Example

	Improv
	Installing libEnsemble and Dependencies
	Job Submission
	Example
	mpi4py comms

	Perlmutter
	Configuring Python and Installation
	Create a conda environment

	Installing libEnsemble and dependencies
	Job Submission
	Example
	To watch video

	Running libEnsemble with mpi4py
	Perlmutter FAQ
	Additional Information

	Polaris
	Configuring Python and Installation
	Ensuring use of mpiexec
	Job Submission
	Demonstration

	Spock/Crusher
	Configuring Python and Installation
	Job Submission
	Installing libEnsemble and dependencies
	Example

	Summit
	Configuring Python
	Installing libEnsemble
	Special note on resource sets and Executor submit options
	Job Submission
	Interactive Runs
	Batch Runs

	Launching User Applications from libEnsemble Workers
	Additional Information

	libEnsemble with SLURM
	Common Errors
	Note on Resource Binding
	Some useful commands

	Example Scheduler Submission Scripts

	Developer’s Guide
	Contributing to libEnsemble
	Internal Modules
	Manager Module
	libEnsemble manager routines

	Worker Module
	libEnsemble worker class

	History Module
	Resources Module
	RSET Resources Module
	Worker Resources Module
	Environment Resources Module
	Node Resources Module
	MPI Resources Module
	Scheduler Module

	Release Management
	Release Process
	Before release
	During release
	After release

	Release Platforms
	GitHub release
	PyPI release
	Conda release
	Automatic PR
	Manual PR
	Release

	A workflow for updating libEnsemble on Spack
	Updating (the develop branch)
	Making changes
	Quick example to update libEnsemble
	Express Summary: Make Fork Identical to Upstream

	Appendices
	Advanced Installation
	Optional Dependencies for Additional Features

	Tutorials
	Simple Introduction
	Executor with Electrostatic Forces
	Getting Started
	Calling Script
	Exercise

	Simulation Function
	Running the example
	Exercises

	Running the generator on the manager

	Executor - Assign GPUs
	Simulation function
	Compiling the Forces application
	Running the example
	Changing the number of GPUs per worker
	Varying resources
	Multiple applications
	Checking GPU usage
	Example submission script

	Optimization with APOSMM
	Six-Hump Camel Simulation Function
	APOSMM Operations
	APOSMM Persistence
	Calling Script
	Final Setup, Run, and Output
	Applications

	Calibration with Simulation Cancellation
	Introduction - Calibration with libEnsemble and a Regression Model
	Overview of the Calibration Problem
	Point Cancellation Requests and Dedicated Fields
	Allocation Function and Cancellation Configuration
	Calling Script - Reading Results
	Using cancellations to kill running simulations

	Frequently Asked Questions
	Debugging
	Common Errors
	HPC Errors and Questions
	libEnsemble Help
	macOS and Windows Errors

	Known Issues
	Example User Functions and Calling Scripts
	Generator Functions
	sampling
	persistent_sampling
	persistent_sampling_var_resources
	APOSMM
	Configuring APOSMM
	Persistent APOSMM
	LocalOptInterfacer

	uniform_or_localopt
	persistent_tasmanian
	persistent_fd_param_finder
	persistent_surmise

	Simulation Functions
	six_hump_camel
	chwirut
	noisy_vector_mapping
	periodic_func
	borehole
	executor_hworld

	Allocation Functions
	give_sim_work_first
	fast_alloc
	start_only_persistent
	start_persistent_local_opt_gens

	Calling Scripts
	Local Sine Tutorial
	Electrostatic Forces with Executor
	Traditional Version
	Object + yaml Version

	Persistent APOSMM with Gradients

	Release Notes
	Release 1.3.0
	Release 1.2.2
	Release 1.2.1
	Release 1.2.0
	Release 1.1.0
	Release 1.0.0
	Release 0.10.2
	Release 0.10.1
	Release 0.10.0
	Release 0.9.3
	Release 0.9.2
	Release 0.9.1
	Release 0.9.0
	Release 0.8.0
	Release 0.7.2
	Release 0.7.1
	Release 0.7.0
	Release 0.6.0
	Release 0.5.2
	Release 0.5.1
	Release 0.5.0
	Release 0.4.1
	Release 0.4.0
	Release 0.3.0
	Release 0.2.0
	Release 0.1.0

	Python Module Index
	Index

